ترغب بنشر مسار تعليمي؟ اضغط هنا

[CII] and 12CO(1-0) Emission Maps in HLSJ091828.6+514223: A Strongly Lensed Interacting System at z=5.24

207   0   0.0 ( 0 )
 نشر من قبل Tim Rawle
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.D. Rawle




اسأل ChatGPT حول البحث

We present Submillimeter Array (SMA) [CII] 158um and Jansky Very Large Array (JVLA) $^{12}$CO(1-0) line emission maps for the bright, lensed, submillimeter source at $z=5.2430$ behind Abell 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple $^{12}$CO rotational transitions, [CI], water and [NII], providing some of the best constraints on the properties of the interstellar medium (ISM) in a galaxy at $z>5$. HLS0918 has a total far-infrared (FIR) luminosity L_FIR(8-1000um) = (1.6$pm$0.1)x10^14 L_sun/mu, where the total magnification mu_total = 8.9$pm$1.9, via a new lens model from the [CII] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components which correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source plane separation <1 kpc. The reddest dominates the continuum map (de-magnified L_FIR = (1.1$pm$0.2)x10^13 L_sun), and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (dV ~ 500 km/s) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region, and photo-dissociation region (PDR) analysis suggests that it is lower density, cooler and forming stars less vigorously than the other components. Strikingly, it has very strong [NII] emission which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.



قيم البحث

اقرأ أيضاً

109 - F. Combes 2012
During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z=0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z=5.2429. This source is u nusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (sim 200mJy at 500micron) and its high redshift. The dominant lens is a foreground z=0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of L_FIR= 1.1 10^{14}/mu Lo, where mu is the magnification factor, likely sim 11. We report here the redshift identification through CO lines with the IRAM-30m, and the analysis of the gas excitation, based on CO(7-6), CO(6-5), CO(5-4) detected at IRAM and the CO(2-1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540kms apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H2 conversion ratio, the H2 mass is 5.8 10^{11}/mu Mo, of which one third is in a cool component. From the CI line we derive a CI/H2 number abundance of 6 10^{-5} similar to that in other ULIRGs. The H2O line is strong only in the red velocity component, with an intensity ratio I(H_2O)/I(CO) sim 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205mics line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.
We present a study using the Karl G. Jansky Very Large Array of 12CO J=1-0 emission in three strongly lensed submillimetre-selected galaxies (SMMJ16359, SMMJ14009 and SMMJ02399) at z=2.5-2.9. These galaxies span L(IR) = 10^11 - 10^13 Lsun, offering a n opportunity to compare the interstellar medium of LIRGs and ULIRGs at high redshift. We estimate molecular gas masses in the range (2-40) x 10^9 Msun using a method that assumes canonical underlying brightness temperature ratios for star-forming and non-star-forming gas phases and a maximal star-formation efficiency. A more simplistic method using X(CO) = 0.8 yields gas masses twice as high. The observed CO(3-2)/CO(1-0) brightness temperature ratio for SMMJ14009, r(3-2)/(1-0) = (0.95 pm 0.12), is indicative of warm star-forming gas, possibly influenced by the central AGN. We search for 12CO(1-0) emission in the Lyman-break galaxy, A2218 #384, located at z=2.517 in the same field as SMMJ16359, and assign a 3-sigma gas mass limit of <6 x 10^8 Msun. We use rest-frame 115-GHz free-free flux densities in SMMJ14009 and SMMJ02399 - measurements tied directly to the photionisation rate of massive stars and made possible by the VLAs bandwidth - to estimate star-formation rates of 400-600 Msun/yr and to estimate the fraction of L(IR) due to the AGN.
151 - D. Schaerer , F. Boone , T. Jones 2015
Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the P lateau de Bure Interferometer (PdBI), we have studied a strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the main coolants of the ISM. [CII] emission from the southern part of this galaxy is detected at 10 $sigma$. Taking into account strong gravitational lensing, which provides a magnification of $mu=49$, the intrinsic lensing-corrected [CII]158 micron luminosity is $L(CII)=1.2 times 10^8 L_odot$. The observed ratio of [CII]-to-IR emission, $L(CII)/L(FIR) approx (1.2-2.4) times 10^{-3}$, is found to be similar to that in nearby galaxies. The same also holds for the observed ratio $L(CII)/L(CO)=2.3 times 10^3$, which is comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at low redshift. We utilize strong gravitational lensing to extend diagnostic studies of the cold ISM to an order of magnitude lower luminosity ($L(IR) sim (1.1-1.3) times 10^{11} L_odot$) and SFR than previous work at high redshift. While larger samples are needed, our results provide evidence that the cold ISM of typical high redshift galaxies has physical characteristics similar to normal star forming galaxies in the local Universe.
127 - Brenda L. Frye 2012
We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i_775= 27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of ~4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M_* = 2 x 10^9 solar masses) with a high specific star formation rate (~20 /Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H)=8.8 +/- 0.2). We break the continuous line-emitting region of this giant arc into seven ~1kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1kpc have a placement on the blue HII region excitation diagram with f([OIII])/f(Hbeta) and f([NeIII])/f(Hbeta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxys extended tail, possibly instigated by a recent galaxy interaction.
165 - A. Omont , R. Neri , P. Cox 2011
The Herschel survey, H-ATLAS, with its large areal coverage, has recently discovered a number of bright, strongly lensed high-z submillimeter galaxies. The strong magnification makes it possible to study molecular species other than CO, which are oth erwise difficult to observe in high-z galaxies. Among the lensed galaxies already identified by H-ATLAS, the source J090302.9-014127B (SDP.17b) at z = 2.305 is remarkable due to its excitation conditions and a tentative detection of the H2O 202-111 emission line (Lupu et al. 2010). We report observations of this line in SDP.17b using the IRAM interferometer equipped with its new 277- 371GHz receivers. The H2O line is detected at a redshift of z = 2.3049+/-0.0006, with a flux of 7.8+/-0.5 Jy km s-1 and a FWHM of 250+/-60 km s-1. The new flux is 2.4 times weaker than the previous tentative detection, although both remain marginally consistent within 1.6-sigma. The intrinsic line luminosity and ratio of H2O(202-111)/CO8-7 seem comparable with those of the nearby starburst/enshrouded-AGN Mrk 231, suggesting that SDP.17b could also host a luminous AGN. The detection of a strong H2O 202-111 line in SDP.17b implies an efficient excitation mechanism of the water levels that must occur in very dense and warm interstellar gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا