ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-narrow and widely tunable Mn^(2+) Emission from Single Nanocrystals of ZnS-CdS alloy

91   0   0.0 ( 0 )
 نشر من قبل D.D. Sarma
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence (PL) over a narrow energy window of width <= 149 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (~ 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (~ 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

قيم البحث

اقرأ أيضاً

125 - J. Perez-Conde 2003
The electronic and optical properties of spherical nanoheterostructures are studied within the semi-empirical $sp^{3}s^{*}$ tight-binding model including the spin-orbit interaction. We use a symmetry-based approach previously applied to CdSe and CdTe quantum dots. The complete one-particle spectrum is obtained by using group-theoretical methods. The excitonic eigenstates are then deduced in the configuration-interaction approach by fully taking into account the Coulomb direct and exchange interactions. Here we focus on ZnS/CdS, ZnS/CdS/ZnS and CdS/ZnS nanocrystals with particular emphasis on recently reported experimental data. The degree of carrier localization in the CdS well layer is analyzed as a function of its thickness. We compute the excitonic fine structure, i.e., the relative intensities of low-energy optical transitions. The calculated values of the absorption gap show a good agreement with the experimental ones. Enhanced resonant photoluminescence Stokes shifts are predicted.
We present the studies of structural, electrical, and magnetic properties of bulk Cd$_{1textrm{-}x}$Mn$_{x}$GeAs$_{2}$ crystals with low Mn content, $x$, varying from 0 to 0.037. The studied samples have excellent crystallographic quality indicated b y the presence of diffraction patterns never before observed experimentally for this compound. The electrical transport in our samples is dominated by thermal activation of conducting holes from the impurity states to the valence band with activation energy of about 200$;$meV. The defect states acting as ionic scattering centers with concentration in the range from 6 to 15$times$10$^{17}$$;$cm$^{-3}$ are observed. The effective Mn content in our samples, $bar{x}_{theta}$, determined from fit of the susceptibility data to the Curie-Weiss law, is very close to the average chemical content, $x$. It indicates that the Mn ions are distributed randomly, substituting the Cd sites in the host CdGeAs$_{2}$ lattice. We observe a negative Curie-Weiss temperature, $|theta|$$,$$leq$$,$3.1$;$K, increasing as a function of $x$. This indicates the significance of the short-range interactions between the Mn ions.
We present a theoretical description of excitons and positively and negatively charged trions in giant CdSe/CdS core-shell nanocrystals (NCs). The developed theory provides the parameters describing the fine structure of excitons in CdSe/CdS core/thi ck shell NCs as a function of the CdSe/CdS conduction band offset and the CdSe core radius. We have also developed a general theory describing the fine structure of positively charged trions created in semiconductor NCs with a degenerate valence band. The calculations take into account the complex structure of the CdSe valence band and inter-particle Coulomb and exchange interaction. Presented in this paper are the CdSe core size and CdSe/CdS conduction band offset dependences (i) of the positively charged trion fine structure, (ii) of the binding energy of the negatively charged trion, and (iii) of the radiative decay time for excitons and trions. The results of theoretical calculations are in qualitative agreement with available experimental data.
Using the density functional theory of electronic structure, we compute the anisotropic dielectric response of bulk black phosphorus subject to strain. Employing the obtained permittivity tensor, we solve Maxwells equations and study the electromagne tic response of a layered structure comprising a film of black phosphorus stacked on a metallic substrate. Our results reveal that a small compressive or tensile strain, $sim 4%$, exerted either perpendicular or in the plane to the black phosphorus growth direction, efficiently controls the epsilon-near-zero response, and allows a perfect absorption tuning from low-angle of the incident beam $theta=0^circ$ to high values $thetaapprox 90^circ$ while switching the energy flow direction. Incorporating a spatially inhomogeneous strain model, we also find that for certain thicknesses of the black phosphorus, near-perfect absorption can be achieved through controlled variations of the in-plane strain. These findings can serve as guidelines for designing largely tunable perfect electromagnetic wave absorber devices.
Imposing additional confinement in two-dimensional (2D) materials can yield further control over the associated electronic, optical, and topological properties. However, synthesis of ultra-narrow nanoribbons (NRs) remains a challenge, particularly fo r the transition metal dichalcogenides (TMDs), and synthesizing TMD NRs narrower than 50 nm has remained elusive. Here, we report the vapor-phase synthesis of ultra-narrow TaS2 NRs. The NRs are grown within the hollow cavity of carbon nanotubes, thereby limiting their lateral dimensions and layer number, while simultaneously stabilizing them against the environment. The NRs reach the monolayer (ML) limit and exhibit widths as low as 2.5 nm. Atomic-resolution scanning transmission electron microscopy (STEM) reveals the detailed atomic structure of the ultra-narrow NRs and we observe a hitherto unseen atomic structure supermodulation phenomenon of ordered defect arrays within the NRs. First-principles calculations based on density functional theory (DFT) show the presence of flat bands, as well as edge- and boundary-localized states, and help identify the atomic configuration of the supermodulation. Nanotube-templated synthesis represents a unique, transferable, and broadly deployable route toward ultra-narrow TMD NR growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا