ﻻ يوجد ملخص باللغة العربية
The magnetic structure of the mixed antiferromagnet NdMn$_{0.8}$Fe$_{0.2}$O$_3$ was resolved. Neutron powder diffraction data definitively resolve the Mn-sublattice with a magnetic propagation vector ${bf k} = (000)$ and with the magnetic structure (A$_x$, F$_y$, G$_z$) for 1.6~K~$< T < T_N (approx 59$~K). The Nd-sublattice has a (0, f$_y$, 0) contribution in the same temperature interval. The Mn sublattice undergoes spin-reorientation transition at $T_1 approx 13$~K while the Nd magnetic moment keep ordered abruptly increases at this temperature. Powder X-ray diffraction shows a strong magnetoelastic effect at $T_N$ but no additional structural phase transitions from 2~K to 300~K. Density functional theory calculations confirm the magnetic structure of the undoped NdMnO$_3$ as part of our analysis. Taken together, these results show the magnetic structure of Mn-sublattice in NdMn$_{0.8}$Fe$_{0.2}$O$_3$ is a combination of the Mn and Fe parent compounds, but the magnetic ordering of Nd sublattice spans over broader temperature interval than in case of NdMnO$_3$ and NdFeO$_3$. This result is a consequence of the fact that the Nd ions do not order independently, but via polarization from Mn/Fe sublattice.
In contrast to bulk materials, nanoscale crystal growth is critically influenced by size- and shape-dependent properties. However, it is challenging to decipher how stoichiometry, in the realm of mixed-valence elements, can act to control physical pr
The magnetic ordering of La$_{1/3}$Sr$_{2/3}$FeO$_3$ perovskite has been studied by neutron powder diffraction and $^{57}$Fe Mossbauer spectroscopy down to 2 K. From symmetry analysis, a chiral helical model and a collinear model are proposed to desc
Magnetic Tunnel Junctions whose basic element consists of two ferromagnetic electrodes separated by an insulating non-magnetic barrier have become intensely studied and used in non-volatile spintronic devices. Since ballistic tunnel of spin-polarized
The crystal and magnetic structure of (La0.70Ca0.30)(CryMn1-y)O3 for y = 0.70, 0.50 and 0.15 has been investigated using neutron powder diffraction. The three samples crystallize in the Pnma space group at both 290 K and 5 K and exhibit different mag
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structur