ترغب بنشر مسار تعليمي؟ اضغط هنا

Type-Ia Supernova Rates to Redshift 2.4 from CLASH: the Cluster Lensing And Supernova survey with Hubble

173   0   0.0 ( 0 )
 نشر من قبل Or Graur
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ~13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of -1.00 +0.06(0.09) -0.06(0.10) (statistical) +0.12 -0.08 (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at a >99% significance level.



قيم البحث

اقرأ أيضاً

The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in deta il in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of CDM. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, twenty CLASH clusters are solely X-ray selected. The X-ray selected clusters are massive (kT > 5 keV; 5 - 30 x 10^14 M_solar) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (Einstein radii > 35 arcsec at z_source = 2) to further quantify the lensing bias on concentration, to yield high resolution dark matter maps, and to optimize the likelihood of finding highly magnified high-redshift (z > 7) galaxies. The high magnification, in some cases, provides angular resolutions unobtainable with any current UVOIR facility and can yield z > 7 candidates bright enough for spectroscopic follow-up. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (sigma_phz < 0.02(1+z)) photometric redshifts for dozens of newly discovered multiply-lensed images per cluster. Observations of each cluster are spread over 8 epochs to enable a search, primarily in the parallel fields, for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of such supernovae in an epoch when the universe is matter dominated.
We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.45 from the Hubble Space Telescope (HST) Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 + /- 1 cluster SNe Ia, we determine a SN Ia rate of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1 yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat) +0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a factor of approximately 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a power law (proportional to t^s). Under the assumption of a cluster formation redshift of z_f = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41 +0.47/-0.40, consistent with measurements of the delay time distribution in the field. This measurement is generally consistent with expectations for the double degenerate scenario and inconsistent with some models for the single degenerate scenario predicting a steeper delay time distribution at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.
We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z ~ 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z > 1 and strengthening the case for a SN Ia rate that is equal to or greater than ~0.6 x 10^-4/yr/Mpc^3 at z ~ 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.
252 - A. Zitrin , T. Broadhurst , D. Coe 2011
We examine the inner mass distribution of the relaxed galaxy cluster Abell 383 in deep 16-band HST/ACS+WFC3 imaging taken as part of the CLASH multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive c lusters, and balances depth with a wide wavelength coverage to better identify lensed systems and generate precise photometric redshifts. This information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply-lensed images and candidates, so that a total of 27 multiple-images of 9 systems are used to tightly constrain the inner mass profile, $dlog Sigma/dlog rsimeq -0.6pm 0.1$ (r<160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01<z<6.03, with the higher redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap. The overall mass profile is well fitted by an NFW profile with M_{vir}=(5.37^{+0.70}_{-0.63}pm 0.26) x 10^{14}M_{odot}/h and a relatively high concentration, c_{vir}=8.77^{+0.44}_{-0.42}pm 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of Abell 383 is modest by the standards of other lensing clusters, r_{E}simeq16pm2arcsec (for z_s=2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias. (ABRIDGED)
The rate evolution of subluminous Type Ia Supernovae is presented using data from the Supernova Legacy Survey. This sub-sample represents the faint and rapidly-declining light-curves of the observed supernova Ia (SN Ia) population here defined by low stretch values (s<0.8). Up to redshift z=0.6, we find 18 photometrically-identified subluminous SNe Ia, of which six have spectroscopic redshift (and three are spectroscopically-confirmed SNe Ia). The evolution of the subluminous volumetric rate is constant or slightly decreasing with redshift, in contrast to the increasing SN Ia rate found for the normal stretch population, although a rising behaviour is not conclusively ruled out. The subluminous sample is mainly found in early-type galaxies with little or no star formation, so that the rate evolution is consistent with a galactic mass dependent behavior: $r(z)=Atimes M_g$, with $A=(1.1pm0.3)times10^{-14}$ SNe per year and solar mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا