ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Origin for the 125 GeV Higgs; a Hybrid setup

238   0   0.0 ( 0 )
 نشر من قبل Shaouly Bar-Shalom
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a hybrid framework for electroweak symmetry breaking (EWSB), in which the Higgs mechanism is combined with a Nambu-Jona-Lasinio mechanism. The model introduces an unconstrained scalar (i.e., acts as fundamental but not the SM field) and a strongly coupled doublet of heavy quarks with a mass around 500 GeV, which forms a condensate at a compositeness scale Lambda ~ O(1) TeV. This setup is matched at that scale to a tightly constrained hybrid two Higgs doublet model, where both the composite and unconstrained scalars participate in EWSB. This allows us to get a good candidate for the recently observed 125 GeV scalar which has properties very similar to the Standard Model Higgs. The heavier (mostly composite) CP-even scalar has a mass around 500 GeV, while the pseudoscalar and the charged Higgs particles have masses in the range 200 -300 GeV.



قيم البحث

اقرأ أيضاً

Existing models of dynamical electroweak symmetry breaking (EWSB) find it very difficult to get a Higgs of mass lighter than $m_t$. Consequently, in light of the LHC discovery of the ~125 GeV Higgs, such models face a significant obstacle. Moreover, with three generations those models have a superheavy cut-off around $10^{17}$ GeV, requiring a significant fine-tuning. To overcome these twin difficulties, we propose a hybrid framework for EWSB, in which the Higgs mechanism is combined with a Nambu-Jona-Lasinio mechanism. The model introduces a strongly coupled doublet of heavy quarks with a mass around 500 GeV, which forms a condensate at a compositeness scale $Lambda$ about a few TeV, and an additional unconstrained scalar doublet which behaves as a fundamental doublet at $Lambda$. This fundamental-like doublet has a vanishing quartic term at $Lambda$ and is, therefore, not the SM doublet, but should rather be viewed as a pseudo-Goldstone boson of the underlying strong dynamics. This setup is matched at the compositeness scale $Lambda$ to a tightly constrained hybrid two Higgs doublet model, where both the composite and unconstrained scalars participate in EWSB. This allows us to get a good candidate for the recently observed 125 GeV scalar which has properties very similar to the Standard Model Higgs. The heavier (mostly composite) CP-even scalar has a mass around 500 GeV, while the pseudoscalar and the charged Higgs particles have masses in the range 200 -300 GeV.
We review the possible role that multi-Higgs models may play in our understanding of the dynamics of a heavy 4th sequential generation of fermions. We describe the underlying ingredients of such models, focusing on two Higgs doublets, and discuss how they may effectively accommodate the low energy phenomenology of such new heavy fermionic degrees of freedom. We also discuss the constraints on these models from precision electroweak data as well as from flavor physics and the implications for collider searches of the Higgs particles and of the 4th generation fermions, bearing in mind the recent observation of a light Higgs with a mass of ~125 GeV.
The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymme tric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. In this article we discuss properties of the SM-like Higgs production and decay rates induced by the possible presence of light staus and light stops. Light staus can affect the decay rate of the Higgs into di-photons and, in the case of sizable left-right mixing, induce an enhancement in this production channel up to $sim$ 50% of the Standard Model rate. Light stops may induce sizable modifications of the Higgs gluon fusion production rate and correlated modifications to the Higgs diphoton decay. Departures from SM values of the bottom-quark and tau-lepton couplings to the Higgs can be obtained due to Higgs mixing effects triggered by light third generation scalar superpartners. We describe the phenomenological implications of light staus on searches for light stops and non-standard Higgs bosons. Finally, we discuss the current status of the search for light staus produced in association with sneutrinos, in final states containing a $W$ gauge boson and a pair of $tau$s.
The parameter space of the phenomenological MSSM (pMSSM) is explored by means of Markov Chain Monte Charlo (MCMC) methods, taking into account the latest LHC results on the Higgs signal at 125 GeV in addition to relevant low-energy observables and LE P constraints. We use a Bayesian approach to derive posterior densities for the parameters and observables of interests. We find in particular that the Higgs measurements have a significant impact on the parameters mu and tan beta due to radiative corrections to the bottom Yukawa coupling. We show moreover the impact of the most recent dark matter measurements on the probability distributions, and we discuss prospects for the next run of the LHC at 13-14 TeV.
We examine GUT-scale NMSSM scenarios in which {it both} $h_1$ and $h_2$ lie in the 123 -- 128 GeV mass range. Very substantially enhanced $gammagamma$ and other rates are possible. Broadened mass peaks are natural.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا