ترغب بنشر مسار تعليمي؟ اضغط هنا

Koszul algebras and their syzygies

129   0   0.0 ( 0 )
 نشر من قبل Aldo Conca
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Aldo Conca




اسأل ChatGPT حول البحث

These are the notes of the lectures of the author at the 2013 CIME/CIRM summer school on Combinatorial Algebraic Geometry. Koszul algebras, introduced by Priddy, are positively graded K-algebras R whose residue field K has a linear free resolution as an R-module. The first part of the notes is devoted to the introduction of Koszul algebras and their characterization in terms of Castelnuovo-Mumford regularity. In the second part we discuss recernt results on the syzygies of Koszul algebras. Finally in the last part we discuss the Koszul property of Veronese algebras and of algebras associated with collections of hyperspaces.



قيم البحث

اقرأ أيضاً

This is a survey paper on commutative Koszul algebras and Castelnuovo-Mumford regularity. We describe several techniques to establish the Koszulness of algebras. We discuss variants of the Koszul property such as strongly Koszul, absolutely Koszul an d universally Koszul. We present several open problems related with these notions and their local variants.
We study absolutely Koszul algebras, Koszul algebras with the Backelin-Roos property and their behavior under standard algebraic operations. In particular, we identify some Veronese subrings of polynomial rings that have the Backelin-Roos property an d conjecture that the list is indeed complete. Among other things, we prove that every universally Koszul ring defined by monomials has the Backelin-Roos property.
We show that for every positive integer R there exist monomial ideals generated in degree two, with linear syzygies, and regularity of the quotient equal to R. Such examples can not be found among Gorenstein ideals since the regularity of their quoti ents is at most four. We also show that for most monomial ideals generated in degree two and with linear syzygies the regularity grows at most doubly logarithmically in the number of variables.
We show that the graded maximal ideal of a graded $K$-algebra $R$ has linear quotients for a suitable choice and order of its generators if the defining ideal of $R$ has a quadratic Grobner basis with respect to the reverse lexicographic order, and s how that this linear quotient property for algebras defined by binomial edge ideals characterizes closed graphs. Furthermore, for algebras defined by binomial edge ideals attached to a closed graph and for join-meet rings attached to a finite distributive lattice we present explicit Koszul filtrations.
We show that the virtual cohomological dimension of a Coxeter group is essentially the regularity of the Stanley--Reisner ring of its nerve. Using this connection between geometric group theory and commutative algebra, as well as techniques from the theory of hyperbolic Coxeter groups, we study the behavior of the Castelnuovo--Mumford regularity of square-free quadratic monomial ideals. We construct examples of such ideals which exhibit arbitrarily high regularity after linear syzygies for arbitrarily many steps. We give a doubly logarithmic bound on the regularity as a function of the number of variables if these ideals are Cohen--Macaulay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا