ﻻ يوجد ملخص باللغة العربية
Continuous-variable (CV) qubits can be created on an optical longitudinal mode in which quantum information is encoded by the superposition of even and odd Schroedingers cat states with quadrature amplitude. Based on the analogous features of paraxial optics and quantum mechanics, we propose a system to generate and detect CV qubits on an optical transverse mode. As a proof-of-principle experiment, we generate six CV qubit states and observe their probability distributions in position and momentum space. This enabled us to prepare a non-Gaussian initial state for CV quantum computing. Other potential applications of the CV qubit include adiabatic control of a beam profile, phase shift keying on transverse modes, and quantum cryptography using CV qubit states.
In a new branch of quantum computing, information is encoded into coherent states, the primary carriers of optical communication. To exploit it, quantum bits of these coherent states are needed, but it is notoriously hard to make superpositions of su
Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have been proposed for discrete-variable (
I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett.
Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudo-spin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answe
We investigate permutation-invariant continuous variable quantum states and their covariance matrices. We provide a complete characterization of the latter with respect to permutation-invariance, exchangeability and representing convex combinations o