ترغب بنشر مسار تعليمي؟ اضغط هنا

Greenland Telescope (GLT) Project: A Direct Confirmation of Black Hole with Submillimeter VLBI

148   0   0.0 ( 0 )
 نشر من قبل Masanori Nakamura
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The GLT project is deploying a new submillimeter (submm) VLBI station in Greenland. Our primary scientific goal is to image a shadow of the supermassive black hole (SMBH) of six billion solar masses in M87 at the center of the Virgo cluster of galaxies. The expected SMBH shadow size of 40-50 $mu$as requires superbly high angular resolution, suggesting that the submm VLBI would be the only way to obtain the shadow image. The Summit station in Greenland enables us to establish baselines longer than 9,000 km with ALMA in Chile and SMA in Hawaii as well as providing a unique $u$--$v$ coverage for imaging M87. Our VLBI network will achieve a superior angular resolution of about 20 $mu$as at 350 GHz, corresponding to $sim2.5$ times of the Schwarzschild radius of the supermassive black hole in M87. We have been monitoring the atmospheric opacity at 230 GHz since August. 2011; we have confirmed the value on site during the winter season is comparable to the ALMA site thanks to high altitude of 3,200 m and low temperature of $-50degr$C. We will report current status and future plan of the GLT project towards our expected first light on 2015--2016.



قيم البحث

اقرأ أيضاً

A 12-m diameter radio telescope will be deployed to the Summit Station in Greenland to provide direct confirmation of a Super Massive Black Hole (SMBH) by observing its shadow image in the active galaxy M87. The telescope (Greenland Telescope: GLT) i s to become one of the Very Long Baseline Interferometry (VLBI) stations at sub-millimeter (submm) regime, providing the longest baseline > 9,000 km to achieve an exceptional angular resolution of 20 micro arc sec at 350 GHz, which will enable us to resolve the shadow size of ~40 micro arc sec. The triangle with the longest baselines formed by the GLT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the Submillimeter Array (SMA) in Hawaii will play a key role for the M87 observations. We have been working on the image simulations based on realistic conditions for a better understanding of the possible observed images. In parallel, retrofitting of the telescope and the site developments are in progress. Based on three years of opacity monitoring at 225 GHz, our measurements indicate that the site is excellent for submm observations, comparable to the ALMA site. The GLT is also expected to make single-dish observations up to 1.5 THz.
The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA), SAOs main partner for this project, are working jointly to rel ocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna electronic enclosures housing servo and other drive components, and the cables. We selected Vertex, the original antenna manufacturer, for the main design work, which is in progress. The next coming months will see the major antenna components and subsystems shipped to a site of the US East Coast for test-fitting the major antenna components, which have been retrofitted. The following step will be to ship the components to Greenland to carry out VLBI and single dish observations. Antenna reassembly at Summit Station should take place during the summer of 2018.
131 - D. M. Alexander 2009
Submillimeter-emitting galaxies (SMGs) are z~2 bolometrically luminous systems hosting energetic starburst and AGN activity. SMGs may represent a rapid growth phase that every massive galaxy undergoes before lying on the well-established black-hole-s pheroid mass relationship in the local Universe. Here we briefly discuss our recent results from Alexander et al. (2008) where we estimated the masses of the black holes in SMGs using the black-hole virial mass estimator, finding M_BH~6x10^7 M_solar for typical SMGs. We show that the black-hole-spheroid mass ratio for SMGs at z~2 was suggestively below that found for massive galaxies in the local Universe and more than an order of magnitude below the black-hole-spheroid mass ratio estimated for z~2 quasars and radio galaxies. We demonstrate that SMGs and their progeny cannot lie on the elevated z~2 black-hole-spheroid mass relationship of quasars-radio galaxies without overproducing the space density of the most massive black holes (M_BH~10^9 M_solar), unless the galaxy spheroid of SMGs is an order of magnitude lower than that typically assumed (M_SPH~10^10 M_solar). We also show that the relative black-hole-spheroid growth rates of typical SMGs appear to be insufficient to significantly increase the black-hole-spheroid mass ratio, without requiring long duty cycles (~10^9 years), and argue that a more AGN-dominated phase (e.g., an optically bright quasar) is required to significantly move SMGs (and their progeny) up the black-hole-spheroid mass plane.
The Event Horizon Telescope (EHT) is a very long baseline interferometer built to image supermassive black holes on event-horizon scales. In this paper, we investigate candidate sites for an expanded EHT array with improved imaging capabilities. We u se historical meteorology and radiative transfer analysis to evaluate site performance. Most of the existing sites in the EHT array have median zenith opacity less than 0.2 at 230 GHz during the March/April observing season. Seven of the existing EHT sites have 345 GHz opacity less than 0.5 during observing months. Out of more than forty candidate new locations analyzed, approximately half have 230 GHz opacity comparable to the existing EHT sites, and at least seventeen of the candidate sites would be comparably good for 345 GHz observing. A group of new sites with favorable transmittance and geographic placement leads to greatly enhanced imaging and science on horizon scales.
The Greenland Telescope project has recently participated in an experiment to image the supermassive black hole shadow at the center of M87 using Very Long Baseline Interferometry technique in April of 2018. The antenna consists of the 12-m ALMA Nort h American prototype antenna that was modified to support two auxiliary side containers and to withstand an extremely cold environment. The telescope is currently at Thule Air Base in Greenland with the long-term goal to move the telescope over the Greenland ice sheet to Summit Station. The GLT currently has a single cryostat which houses three dual polarization receivers that cover 84-96 GHz, 213-243 GHz and 271-377 GHz bands. A hydrogen maser frequency source in conjunction with high frequency synthesizers are used to generate the local oscillator references for the receivers. The intermediate frequency outputs of each receiver cover 4-8 GHz and are heterodyned to baseband for digitization within a set of ROACH-2 units then formatted for recording onto Mark-6 data recorders. A separate set of ROACH-2 units operating in parallel provides the function of auto-correlation for real-time spectral analysis. Due to the stringent instrumental stability requirements for interferometry a diagnostic test system was incorporated into the design. Tying all of the above equipment together is the fiber optic system designed to operate in a low temperature environment and scalable to accommodate a larger distance between the control module and telescope for Summit Station. A report on the progress of the above electronics instrumentation system will be provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا