ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

75   0   0.0 ( 0 )
 نشر من قبل Ricardo Fonseca
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new generation of laser wakefield accelerators, supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modeling for further understanding of the underlying physics and identification of optimal regimes, but large scale modeling of these scenarios is computationally heavy and requires efficient use of state-of-the-art Petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed / shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modeling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over $sim 10^6$ cores, and sustained performance over $sim 2$ PFlops is demonstrated, opening the way for large scale modeling of laser wakefield accelerator scenarios.

قيم البحث

اقرأ أيضاً

Modeling of laser-plasma wakefield accelerators in an optimal frame of reference cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency i nstability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedmans damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.
113 - X. L. Xu 2015
Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlin ear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.
The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) comput er simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a0 = 1.5 and the other with an a0 = 3. We find that in both cases direct laser acceleration (DLA) is an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a0 = 3 case and 180 MeV in the a0 = 1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a0 = 3 case and up to 12 keV for the a0 = 1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energy of 13 and 45 keV for the a0 of 3 and critical photon energy of 0.3 and 1.4 keV for a0 of 1.5 in the plane of polarization of the laser. The full width at half maximum divergence angle of the x-rays was 62 x 1.9 mrad for a0 = 3 and 77 x 3.8 mrad for a0 = 1.5.
119 - J. Luo , M. Chen , W. Y. Wu 2017
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using pla sma mirrors, while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize simultaneous coupling of the electron beam and the laser pulse into a second stage. A curved channel with transition segment is used to guide a fresh laser pulse into a subsequent straight channel, while allowing the electrons to propagate in a straight channel. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma, while suppressing transverse beam dispersion. With moderate laser parameters, particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration, while maintaining high capture efficiency, stability, and beam quality.
The effect of laser focusing conditions on the evolution of relativistic plasma waves in laser wakefield accelerators is studied both experimentally and with particle-in-cell simulations. For short focal length ($w_0 < lambda_p$) interactions, beam b reak-up prevents stable propagation of the pulse. High field gradients lead to non-localized phase injection of electrons, and thus broad energy spread beams. However for long focal length geometries ($w_0 > lambda_p$), a single optical filament can capture the majority of the laser energy, and self-guide over distances comparable to the dephasing length, even for these short-pulses ($ctau approx lambda_p$). This allows the wakefield to evolve to the correct shape for the production of the monoenergetic electron bunches, as measured in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا