ترغب بنشر مسار تعليمي؟ اضغط هنا

The Herschel/PACS view of disks around low-mass stars in Chamaleon-I

115   0   0.0 ( 0 )
 نشر من قبل Johan Olofsson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Circumstellar disks are expected to be the birthplaces of planets. The potential for forming one or more planets of various masses is essentially driven by the initial mass of the disks. We present and analyze Herschel/PACS observations of disk-bearing M-type stars that belong to the young ~2 Myr old Chamaleon-I star forming region. We used the radiative transfer code RADMC to successfully model the SED of 17 M-type stars detected at PACS wavelengths. We first discuss the relatively low detection rates of M5 and later spectral type stars with respect to the PACS sensitivity, and argue their disks masses, or flaring indices, are likely to be low. For M0 to M3 stars, we find a relatively broad range of disk masses, scale heights, and flaring indices. Via a parametrization of dust stratification, we can reproduce the peak fluxes of the 10 $mu$m emission feature observed with Spitzer/IRS, and find that disks around M-type stars may display signs of dust sedimentation. The Herschel/PACS observations of low-mass stars in Cha-I provide new constraints on their disk properties, overall suggesting that disk parameters for early M-type stars are comparable to those for more massive stars (e.g., comparable scale height and flaring angles). However, regions of the disks emitting at about 100 $mu$m may still be in the optically thick regime, preventing direct determination of disk masses. Thus the modeled disk masses should be considered as lower limits. Still, we are able to extend the wavelength coverage of SED models and start characterizing effects such as dust sedimentation, an effort leading the way towards ALMA observations of these low-mass stars.



قيم البحث

اقرأ أيضاً

We report the complete photometric results from our Herschel study which is the first comprehensive program to search for far-infrared emission from cold dust around young brown dwarfs. We surveyed 50 fields containing 51 known or suspected brown dwa rfs and very low mass stars that have evidence of circumstellar disks based on Spitzer photometry and/or spectroscopy. The objects with known spectral types range from M3 to M9.5. Four of the candidates were subsequently identified as extragalactic objects. Of the remaining 47 we have successfully detected 36 at 70micron and 14 at 160micron with S/N greater than 3, as well as several additional possible detections with low S/N. The objects exhibit a range of [24]--[70] micron colors suggesting a range in mass and/or structure of the outer disk. We present modeling of the spectral energy distributions of the sample and discuss trends visible in the data. Using two Monte Carlo radiative transfer codes we investigate disk masses and geometry. We find a very wide range in modeled total disk masses from less than 1e-6 solar masses up to 1e-3 solar masses with a median disk mass of order 3e-5 solar masses, suggesting that the median ratio of disk mass to central object mass may be lower than for T Tauri stars. The disk scale heights and flaring angles, however, cover a range consistent with those seen around T Tauri stars. The host clouds in which the young brown dwarfs and low-mass stars are located span a range in estimated age from ~1-3 Myr to ~10 Myr and represent a variety of star-forming environments. No obvious dependence on cloud location or age is seen in the disk properties, though the statistical significance of this conclusion is not strong.
Far-infrared spectroscopy reveals gas cooling and its underlying heating due to physical processes taking place in the surroundings of protostars. These processes are reflected in both the chemistry and excitation of abundant molecular species. Here, we present the Herschel-PACS far-IR spectroscopy of 90 embedded low-mass protostars from the WISH (van Dishoeck et al. 2011), DIGIT (Green et al. 2013), and WILL surveys (Mottram et al. 2017). The $5times5$ spectra covering the $sim50times50$ field-of-view include rotational transitions of CO, H$_2$O, and OH lines, as well as fine-structure [O I] and [C II] in the $sim$50-200 $mu$m range. The CO rotational temperatures (for $J_mathrm{u}geq14)$ are typically $sim$300 K, with some sources showing additional components with temperatures as high as $sim$1000 K. The H$_2$O / CO and H$_2$O / OH flux ratios are low compared to stationary shock models, suggesting that UV photons may dissociate some H$_2$O and decrease its abundance. Comparison to C shock models illuminated by UV photons shows good agreement between the line emission and the models for pre-shock densities of $10^5$ cm$^{-3}$ and UV fields 0.1-10 times the interstellar value. The far-infrared molecular and atomic lines are the unique diagnostic of shocks and UV fields in deeply-embedded sources.
Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the `William Herschel Line Legacy survey. Line emission from H$_mathrm{2}$O, CO, and OH is tested against shock models from the literature. Observed line ratios are remarkably similar and do not show variations with source physical parameters. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H$_mathrm{2}$O lines provide a particularly good diagnostic of pre-shock gas densities, $n_mathrm{H}sim10^{5}$ cm$^{-3}$, in agreement with typical densities obtained from observations of the post-shock gas. The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km,s$^{-1}$. However, the observations consistently show one-to-two orders of magnitude lower H$_mathrm{2}$O-to-CO and H$_mathrm{2}$O-to-OH line ratios than predicted by the existing shock models. The overestimated model H$_mathrm{2}$O fluxes are most likely caused by an overabundance of H$_mathrm{2}$O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H$_mathrm{2}$O abundances and reconcile the models with observations. Detections of hot H$_mathrm{2}$O and strong OH lines support this scenario.
Our aims are to determine flux densities and their photometric accuracy for a set of seventeen stars that range in flux from intermediately bright (<2.5 Jy) to faint (>5 mJy) in the far-infrared (FIR). We also aim to derive signal-to-noise dependence with flux and time, and compare the results with predictions from the Herschel exposure-time calculation tool. The PACS faint star sample has allowed a comprehensive sensitivity assessment of the PACS photometer. Accurate photometry allows us to establish a set of five FIR primary standard candidates, namely alpha Ari, epsilon Lep, omega,Cap, HD41047 and 42Dra, which are 2 -- 20 times fainter than the faintest PACS fiducial standard (gamma Dra) with absolute accuracy of <6%. For three of these primary standard candidates, essential stellar parameters are known, meaning that a dedicated flux model code may be run.
We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 $mu$m. This wavelength range covers the 69 $mu$m band of crystalline olivine ($text{Mg}_{2-2x}text{Fe}_{(2x)}text{SiO}_{4}$). The width and wavelength position of t his band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, $dot M ge 10^{-5}$ M$_odot$/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 $mu$m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 $mu$m band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sources in the sample, we detected the 69 $mu$m band of crystalline olivine ($text{Mg}_{(2-2x)}text{Fe}_{(2x)}text{SiO}_{4}$). The 69 $mu$m band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 $mu$m band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 $mu$m bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. continued...
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا