ترغب بنشر مسار تعليمي؟ اضغط هنا

Gelfand spectra in Grothendieck toposes using geometric mathematics

69   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bas Spitters




اسأل ChatGPT حول البحث

In the (covariant) topos approach to quantum theory by Heunen, Landsman and Spitters, one associates to each unital C*-algebra, A, a topos T(A) of sheaves on a locale and a commutative C*-algebra, a, within that topos. The Gelfand spectrum of a is a locale S in this topos, which is equivalent to a bundle over the base locale. We further develop this external presentation of the locale S, by noting that the construction of the Gelfand spectrum in a general topos can be described using geometric logic. As a consequence, the spectrum, seen as a bundle, is computed fibrewise. As a by-product of the geometricity of Gelfand spectra, we find an explicit external description of the spectrum whenever the topos is a functor category. As an intermediate result we show that locally perfect maps compose, so that the externalization of a locally compact locale in a topos of sheaves over a locally compact locale is locally compact, too.

قيم البحث

اقرأ أيضاً

The Bourbaki-Witt principle states that any progressive map on a chain-complete poset has a fixed point above every point. It is provable classically, but not intuitionistically. We study this and related principles in an intuitionistic setting. Am ong other things, we show that Bourbaki-Witt fails exactly when the trichotomous ordinals form a set, but does not imply that fixed points can always be found by transfinite iteration. Meanwhile, on the side of models, we see that the principle fails in realisability toposes, and does not hold in the free topos, but does hold in all cocomplete toposes.
53 - Nima Rasekh 2020
We define filter quotients of $(infty,1)$-categories and prove that filter quotients preserve the structure of an elementary $(infty,1)$-topos and in particular lift the filter quotient of the underlying elementary topos. We then specialize to the ca se of filter products of $(infty,1)$-categories and prove a characterization theorem for equivalences in a filter product. Then we use filter products to construct a large class of elementary $(infty,1)$-toposes that are not Grothendieck $(infty,1)$-toposes. Moreover, we give one detailed example for the interested reader who would like to see how we can construct such an $(infty,1)$-category, but would prefer to avoid the technicalities regarding filters.
Grothendieck and Harder proved that every principal bundle over the projective line with split reductive structure group (and trivial over the generic point) can be reduced to a maximal torus. Furthermore, this reduction is unique modulo automorphism s and the Weyl group. In a series of six variations on this theme, we prove corresponding results for principal bundles over the following schemes and stacks: (1) a line modulo the group of nth roots of unity; (2) a football, that is, an orbifold of genus zero with two marked points; (3) a gerbe over a football whose structure group is the nth roots of unity; (4) a chain of lines meeting in nodes; (5) a line modulo an action of a split torus; and (6) a chain modulo an action of a split torus. We also prove that the automorphism groups of such bundles are smooth, affine, and connected.
Let $k$ be a field. We show that locally presentable, $k$-linear categories $mathcal{C}$ dualizable in the sense that the identity functor can be recovered as $coprod_i x_iotimes f_i$ for objects $x_iin mathcal{C}$ and left adjoints $f_i$ from $mathc al{C}$ to $mathrm{Vect}_k$ are products of copies of $mathrm{Vect}_k$. This partially confirms a conjecture by Brandenburg, the author and T. Johnson-Freyd. Motivated by this, we also characterize the Grothendieck categories containing an object $x$ with the property that every object is a copower of $x$: they are precisely the categories of non-singular injective right modules over simple, regular, right self-injective rings of type I or III.
We give a proof of a formula for the trace of self-braidings (in an arbitrary channel) in UMTCs which first appeared in the context of rational conformal field theories (CFTs). The trace is another invariant for UMTCs which depends only on modular da ta, and contains the expression of the Frobenius-Schur indicator as a special case. Furthermore, we discuss some applications of the trace formula to the realizability problem of modular data and to the classification of UMTCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا