ﻻ يوجد ملخص باللغة العربية
We review our understanding of ionized plasma and neutral gas coupling in the weakly ionized, stratified, electromagnetically-permeated regions of the Suns chromosphere and Earths ionosphere/thermosphere. Using representative models for each environment we derive fundamental descriptions of the coupling of the constituent parts to each other and to the electric and magnetic fields, and we examine the variation in magnetization of the ionized component. Using these descriptions we compare related phenomena in the two environments, and discuss electric currents, energy transfer and dissipation. We present a coupled theoretical and numerical study of plasma instabilities in the two environments that serves as an example of how the chromospheric and ionospheric communities can further collaborate. We also suggest future collaborative studies that will help improve our understanding of these two different atmospheres which share many similarities, but have large disparities in key quantities.
We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion
Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We c
Solar flares significantly impact the conditions of the Earths ionosphere. In particular, the sudden increase in X-ray flux during a flare penetrates down to the lowest-lying D-region and dominates ionization at these altitudes (60-100 km). Measureme
A number of ultra-cool dwarfs emit circularly polarised radio waves generated by the electron cyclotron maser instability. In the solar system such radio is emitted from regions of strong auroral magnetic field-aligned currents. We thus apply ideas d
We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M8), using VLT/FLAMES data from the Gaia-ESO Survey. We explore the connections between the nebular gas and the stellar population of the as