ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hybrid Monte Carlo Ant Colony Optimization Approach for Protein Structure Prediction in the HP Model

130   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Andrea G. Citrolo




اسأل ChatGPT حول البحث

The hydrophobic-polar (HP) model has been widely studied in the field of protein structure prediction (PSP) both for theoretical purposes and as a benchmark for new optimization strategies. In this work we introduce a new heuristics based on Ant Colony Optimization (ACO) and Markov Chain Monte Carlo (MCMC) that we called Hybrid Monte Carlo Ant Colony Optimization (HMCACO). We describe this method and compare results obtained on well known HP instances in the 3 dimensional cubic lattice to those obtained with standard ACO and Simulated Annealing (SA). All methods were implemented using an unconstrained neighborhood and a modified objective function to prevent the creation of overlapping walks. Results show that our methods perform better than the other heuristics in all benchmark instances.



قيم البحث

اقرأ أيضاً

In this work, we developed an efficient approach to compute ensemble averages in systems with pairwise-additive energetic interactions between the entities. Methods involving full enumeration of the configuration space result in exponential complexit y. Sampling methods such as Markov Chain Monte Carlo (MCMC) algorithms have been proposed to tackle the exponential complexity of these problems; however, in certain scenarios where significant energetic coupling exists between the entities, the efficiency of the such algorithms can be diminished. We used a strategy to improve the efficiency of MCMC by taking advantage of the cluster structure in the interaction energy matrix to bias the sampling. We pursued two different schemes for the biased MCMC runs and show that they are valid MCMC schemes. We used both synthesized and real-world systems to show the improved performance of our biased MCMC methods when compared to the regular MCMC method. In particular, we applied these algorithms to the problem of estimating protonation ensemble averages and titration curves of residues in a protein.
135 - Zhuoran He , Tingtao Zhou 2021
Modern scientific research has become largely a cooperative activity in the Internet age. We build a simulation model to understand the population-level creativity based on the heuristic ant colony algorithm. Each researcher has two heuristic paramet ers characterizing the goodness of his own judgments and his trust on literature. In a population with all kinds of researchers, we find that as the problem scale increases, the contributor distribution significantly shifts from the independent regime of relying on ones own judgments to the cooperative regime of more closely following the literature. The distribution also changes with the stage of the research problem and the computing power available. Our work provides some preliminary understanding and guidance for the dynamical process of cooperative scientific research in various disciplines.
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem
The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) is an extension of the well-known Vehicle Routing Problem (VRP), which takes into account the dynamic nature of the problem. This aspect requires the vehicle routes to be updated in an on going manner as new customer requests arrive in the system and must be incorporated into an evolving schedule during the working day. Besides the vehicle capacity constraint involved in the classical VRP, DVRPTW considers in addition time windows, which are able to better capture real-world situations. Despite this, so far, few studies have focused on tackling this problem of greater practical importance. To this end, this study devises for the resolution of DVRPTW, an ant colony optimization based algorithm, which resorts to a joint solution construction mechanism, able to construct in parallel the vehicle routes. This method is coupled with a local search procedure, aimed to further improve the solutions built by ants, and with an insertion heuristics, which tries to reduce the number of vehicles used to service the available customers. The experiments indicate that the proposed algorithm is competitive and effective, and on DVRPTW instances with a higher dynamicity level, it is able to yield better results compared to existing ant-based approaches.
Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solu tions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا