ترغب بنشر مسار تعليمي؟ اضغط هنا

The Astrophysical S-factor of the 12C(alpha,gamma)16O Reaction at Solar Energies

204   0   0.0 ( 0 )
 نشر من قبل Hossein Sadeghi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The astrophysical S-factor of the 4He-12C radiative capture is calculated in the potential model at the energy range 0.1-2.0 MeV. Radiative capture 12C(alpha,gamma)16O is extremely relevant for the fate of massive stars and determines if the remnant of a supernova explosion becomes a black hole or a neutron star. Because this reaction occurs at low-energies the experimental measurements is very difficult and perhaps impossible. In this paper, radiative capture of the 12C(alpha,gamma)16O reaction at very low-energies is taken as a case study. In comparison with other theoretical methods and available experimental data, excellent agreement is achieved for the astrophysical S-factor of this process.



قيم البحث

اقرأ أيضاً

The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV a nd 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 <Ep < 1028 keV) can dramatically effect the extrapolation to energies of astrophysical interest. To facilitate a reliable extrapolation the 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran Sasso underground laboratory by both the activation and the prompt gamma detection methods. The present work reports full details of the prompt gamma detection experiment, focusing on the determination of the systematic uncertainty. The final data, including activation measurements at LUNA, are compared with the results of the last generation experiments and two different theoretical models are used to obtain the S-factor at solar energies.
At the long-wavelength approximation, electric dipole transitions are forbidden between isospin-zero states. In an $alpha+n+p$ model with $T = 1$ contributions, the $alpha(d,gamma)^6$Li astrophysical $S$-factor is in agreement with the experimental d ata of the LUNA collaboration, without adjustable parameter. The exact-masses prescription used to avoid the disappearance of $E1$ transitions in potential models is not founded at the microscopic level.
The astrophysical S-factor of 14N(p,gamma)15O has been measured for effective center-of-mass energies between E_eff = 119 and 367 keV at the LUNA facility using TiN solid targets and Ge detectors. The data are in good agreement with previous and rece nt work at overlapping energies. R-matrix analysis reveals that due to the complex level structure of 15O the extrapolated S(0) value is model dependent and calls for additional experimental efforts to reduce the present uncertainty in S(0) to a level of a few percent as required by astrophysical calculations.
106 - Y. J. Li , X. Fang , B. Bucher 2020
The $^{12}$C+$^{12}$C fusion reaction plays a crucial role in stellar evolution and explosions. Its open reaction channels mainly include $alpha$, $p$, $n$, and ${}^{8}$Be. Despite more than a half century of efforts, large discrepancies remain among the experimental data measured using various techniques. In this work, we analyze the existing data using the statistical model. Our calculation shows: 1) the relative systematic uncertainties of the predicted branching ratios get smaller as the predicted ratios increase; 2) the total modified astrophysical S-factors (S$^*$ factors) of the $p$ and $alpha$ channels can each be obtained by summing the S$^*$ factors of their corresponding ground-state transitions and the characteristic $gamma$ rays while taking into account the contributions of the missing channels to the latter. After applying corrections based on branching ratios predicted by the statistical model, an agreement is achieved among the different data sets at ${E}_{cm}>$4 MeV, while some discrepancies remain at lower energies suggesting the need for better measurements in the near future. We find that the recent S$^*$ factor obtained from an indirect measurement is inconsistent with the direct measurement at energies below 2.6 MeV. We recommend upper and lower limits for the ${}^{12}$C+${}^{12}$C S$^*$ factor based on the existing models. A new $^{12}$C+$^{12}$C reaction rate is also recommended.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا