ﻻ يوجد ملخص باللغة العربية
The astrophysical S-factor of the 4He-12C radiative capture is calculated in the potential model at the energy range 0.1-2.0 MeV. Radiative capture 12C(alpha,gamma)16O is extremely relevant for the fate of massive stars and determines if the remnant of a supernova explosion becomes a black hole or a neutron star. Because this reaction occurs at low-energies the experimental measurements is very difficult and perhaps impossible. In this paper, radiative capture of the 12C(alpha,gamma)16O reaction at very low-energies is taken as a case study. In comparison with other theoretical methods and available experimental data, excellent agreement is achieved for the astrophysical S-factor of this process.
The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV a
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran Sasso underground laboratory
At the long-wavelength approximation, electric dipole transitions are forbidden between isospin-zero states. In an $alpha+n+p$ model with $T = 1$ contributions, the $alpha(d,gamma)^6$Li astrophysical $S$-factor is in agreement with the experimental d
The astrophysical S-factor of 14N(p,gamma)15O has been measured for effective center-of-mass energies between E_eff = 119 and 367 keV at the LUNA facility using TiN solid targets and Ge detectors. The data are in good agreement with previous and rece
The $^{12}$C+$^{12}$C fusion reaction plays a crucial role in stellar evolution and explosions. Its open reaction channels mainly include $alpha$, $p$, $n$, and ${}^{8}$Be. Despite more than a half century of efforts, large discrepancies remain among