ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model

126   0   0.0 ( 0 )
 نشر من قبل Jakub Imri\\v{s}ka
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the 3D Hubbard model with anisotropic nearest neighbor tunneling amplitudes using the dynamical cluster approximation and compare the results with a quantum simulation experiment using ultracold fermions in an optical lattice, focussing on magnetic correlations. We find that the short-range spin correlations are significantly enhanced in the direction with stronger tunneling amplitudes. Our results agree with the experimental observations and show that the experimental temperature is lower than the strong tunneling amplitude. We characterize the system by examining the spin correlations beyond neighboring sites and determine the distribution of density, entropy and spin correlation in the trapped system. We furthermore investigate the dependence of the critical entropy at the Neel transition on anisotropy.



قيم البحث

اقرأ أيضاً

The realization of antiferromagnetic (AF) correlations in ultracold fermionic atoms on an optical lattice is a significant achievement. Experiments have been carried out in one, two, and three dimensions, and have also studied anisotropic configurati ons with stronger tunneling in some lattice directions. Such anisotropy is relevant to the physics of cuprate superconductors and other strongly correlated materials. Moreover, this anisotropy might be harnessed to enhance AF order. Here we numerically investigate, using Determinant Quantum Monte Carlo, a simple realization of anisotropy in the 3D Hubbard model in which the tunneling between planes, $t_perp$, is unequal to the intraplane tunneling $t$. This model interpolates between the three-dimensional isotropic ($t_perp = t$) and two-dimensional ($t_perp =0$) systems. We show that at fixed interaction strength to tunneling ratio ($U/t$), anisotropy can enhance the magnetic structure factor relative to both 2D and 3D results. However, this enhancement occurs at interaction strengths below those for which the Neel temperature $T_{rm Nacute{e}el}$ is largest, in such a way that the structure factor cannot be made to exceed its value in isotropic 3D systems at the optimal $U/t$. We characterize the 2D-3D crossover in terms of the magnetic structure factor, real space spin correlations, number of doubly-occupied sites, and thermodynamic observables. An interesting implication of our results stems from the entropys dependence on anisotropy. As the system evolves from 3D to 2D, the entropy at a fixed temperature increases. Correspondingly, at fixed entropy, the temperature will decrease going from 3D to 2D. This suggests a cooling protocol in which the dimensionality is adiabatically changed from 3D to 2D.
We study thermodynamics of the 3D Hubbard model at half filling on approach to the Neel transition by means of large-scale unbiased Diagrammatic Determinant Monte Carlo simulations. We obtain the transition temperature in the strongly correlated regi me, as well as temperature dependence of energy, entropy, double occupancy, and the nearest-neighbor spin correlation function. Our results improve the accuracy of previous unbiased studies and present accurate benchmarks in the ongoing effort to realize the antiferromagnetic state of matter with ultracold atoms in optical lattices.
The SU(2) symmetric Fermi-Hubbard model (FHM) plays an essential role in strongly correlated fermionic many-body systems. In the one particle per site and strongly interacting limit ${U/t gg 1}$, it is effectively described by the Heisenberg Hamilton ian. In this limit, enlarging the spin and extending the typical SU(2) symmetry to SU($N$) has been predicted to give exotic phases of matter in the ground state, with a complicated dependence on $N$. This raises the question of what --- if any --- are the finite-temperature signatures of these phases, especially in the currently experimentally relevant regime near or above the superexchange energy. We explore this question for thermodynamic observables by numerically calculating the thermodynamics of the SU($N$) FHM in the two-dimensional square lattice near densities of one particle per site, using determinant Quantum Monte Carlo and Numerical Linked Cluster Expansion. Interestingly, we find that for temperatures above the superexchange energy, where the correlation length is short, the energy, number of on-site pairs, and kinetic energy are universal functions of $N$. Although the physics in the regime studied is well beyond what can be captured by low-order high-temperature series, we show that an analytic description of the scaling is possible in terms of only one- and two-site calculations.
167 - Hui Zhai , Ning Sun , Jinlong Yu 2018
Utilizing the Fermi gas microscope, recently the MIT group has measured the spin transport of the Fermi Hubbard model starting from a spin-density-wave state, and the Princeton group has measured the charge transport of the Fermi Hubbard model starti ng from a charge-density-wave state. Motivated by these two experiments, we prove a theorem that shows under certain conditions, the spin and charge transports can be equivalent to each other. The proof makes use of the particle-hole transformation of the Fermi Hubbard model and a recently discovered symmetry protected dynamical symmetry. Our results can be directly verified in future cold atom experiment with the Fermi gas microscope.
The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a potential for explaining the mystery of high-temperature superconductivity. Recent progress in ultracold atoms in optical lattices has paved the way to studyi ng the models phase diagram using the tools of quantum simulation, which emerged as a promising alternative to the numerical calculations plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser cooling protocols so far have been too high to show the appearance of antiferromagnetic and superconducting quantum phases directly. In this work, we demonstrate that using the machinery of dissipative quantum state engineering, one can efficiently prepare antiferromagnetic order in present-day experiments with ultracold fermions. The core of the approach is to add incoherent laser scattering in such a way that the antiferromagnetic state emerges as the dark state of the driven-dissipative dynamics. In order to elucidate the development of the antiferromagnetic order we employ two complementary techniques: Monte Carlo wave function simulations for small systems and a recently proposed variational method for open quantum systems, operating in the thermodynamic limit. The controlled dissipation channels described in this work are straightforward to add to already existing experimental setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا