ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of star clusters in a cosmological tidal field

115   0   0.0 ( 0 )
 نشر من قبل Steven Rieder
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method to couple N-body star cluster simulations to a cosmological tidal field, using the Astrophysical Multipurpose Software Environment. We apply this method to star clusters embedded in the CosmoGrid dark matter-only LambdaCDM simulation. Our star clusters are born at z = 10 (corresponding to an age of the Universe of about 500 Myr) by selecting a dark matter particle and initializing a star cluster with 32,000 stars on its location. We then follow the dynamical evolution of the star cluster within the cosmological environment. We compare the evolution of star clusters in two Milky-Way size haloes with a different accretion history. The mass loss of the star clusters is continuous irrespective of the tidal history of the host halo, but major merger events tend to increase the rate of mass loss. From the selected two dark matter haloes, the halo that experienced the larger number of mergers tends to drive a smaller mass loss rate from the embedded star clusters, even though the final masses of both haloes are similar. We identify two families of star clusters: native clusters, which become part of the main halo before its final major merger event, and the immigrant clusters, which are accreted upon or after this event; native clusters tend to evaporate more quickly than immigrant clusters. Accounting for the evolution of the dark matter halo causes immigrant star clusters to retain more mass than when the z=0 tidal field is taken as a static potential. The reason for this is the weaker tidal field experienced by immigrant star clusters before merging with the larger dark matter halo.



قيم البحث

اقرأ أيضاً

134 - Florent Renaud 2011
We present a novel and flexible tensor approach to computing the effect of a time-dependent tidal field acting on a stellar system. The tidal forces are recovered from the tensor by polynomial interpolation in time. The method has been implemented in a direct-summation stellar dynamics integrator (NBODY6) and test-proved through a set of reference calculations: heating, dissolution time and structural evolution of model star clusters are all recovered accurately. The tensor method is applicable to arbitrary configurations, including the important situation where the background potential is a strong function of time. This opens up new perspectives in stellar population studies reaching to the formation epoch of the host galaxy or galaxy cluster, as well as for star-burst events taking place during the merger of large galaxies. A pilot application to a star cluster in the merging galaxies NGC 4038/39 (the Antennae) is presented.
The evolution of globular clusters due to 2-body relaxation results in an outward flow of energy and at some stage all clusters need a central energy source to sustain their evolution. Henon provided the insight that we do not need to know the detail s of the energy production in order to understand the relaxation-driven evolution of the cluster, at least outside the core. He provided two self-similar solutions for the evolution of clusters based on the view that the cluster as a whole determines the amount of energy that is produced in the core: steady expansion for isolated clusters, and homologous contraction for clusters evaporating in a tidal field. We combine these models: the half-mass radius increases during the first half of the evolution, and decreases in the second half; while the escape rate approaches a constant value set by the tidal field. We refer to these phases as `expansion dominated and `evaporation dominated. These simple analytical solutions immediately allow us to construct evolutionary tracks and isochrones in terms of cluster half-mass density, cluster mass and galacto-centric radius. From a comparison to the Milky Way globular clusters we find that roughly 1/3 of them are in the second, evaporation-dominated phase and for these clusters the density inside the half-mass radius varies with the galactocentric distance R as rho_h ~ 1/R^2. The remaining 2/3 are still in the first, expansion-dominated phase and their isochrones follow the environment-independent scaling rho_h ~ M^2; that is, a constant relaxation time-scale. We find substantial agreement between Milky Way globular cluster parameters and the isochrones, which suggests that there is, as Henon suggested, a balance between the flow of energy and the central energy production for almost all globular clusters.
Based on recent findings of a formation mechanism of substructure in tidal tails by Kuepper, Macleod & Heggie (2008) we investigate a more comprehensive set of N-body models of star clusters on orbits about a Milky-Way-like potential. We find that th e predicted epicyclic overdensities arise in any tidal tail no matter which orbit the cluster follows as long as the cluster lives long enough for the overdensities to build up. The distance of the overdensities along the tidal tail from the cluster centre depends for circular orbits only on the mass of the cluster and the strength of the tidal field, and therefore decreases monotonically with time, while for eccentric orbits the orbital motion influences the distance, causing a periodic compression and stretching of the tails and making the distance oscillate with time. We provide an approximation for estimating the distance of the overdensities in this case. We describe an additional type of overdensity which arises in extended tidal tails of clusters on eccentric orbits, when the acceleration of the tidal field on the stellar stream is no longer homogeneous. Moreover, we conclude that a pericentre passage or a disk shock is not the direct origin of an overdensity within a tidal tail. Escape due to such tidal perturbations does not take place immediately after the perturbation but is rather delayed and spread over the orbit of the cluster. All observable overdensities are therefore of the mentioned two types. In particular, we note that substructured tidal tails do not imply the existence of dark-matter sub-structures in the haloes of galaxies.
We study the effect of the instantaneous gas expulsion on star clusters wherein the residual gas has a density profile shallower than that of the embedded cluster. This is expected if star formation proceeds with a given SFE per free-fall time in a c entrally-concentrated molecular clump. We perform direct N-body simulations whose initial conditions are generated by the program mkhalo falcON adapted for our models. Our model clusters initially have a Plummer profile and are in virial equilibrium with the gravitational potential of the cluster-forming clump. The residual gas contribution is computed based on the model of Parmentier&Pfalzner(2013). Our simulations include mass loss by stellar evolution and the tidal field of the Galaxy. We find that a star cluster with a minimum global SFE of 15% is able to survive instantaneous gas expulsion and to produce a bound cluster. Its violent relaxation lasts no longer than 20 Myr, independently of its global SFE and initial stellar mass. At the end of violent relaxation the bound fractions of surviving clusters with the same global SFEs are similar regardless of their initial stellar mass. Their subsequent lifetime in the gravitational field of the Galaxy depends on their bound stellar masses. We therefore conclude that the critical SFE needed to produce a bound cluster is 15%, which is twice smaller than earlier estimates of 33%. Thus we have improved the survival likelihood of young clusters after instantaneous gas expulsion. Those can now survive instantaneous gas expulsion with global SFEs as low as those observed for embedded clusters of Solar Neighbourhood (15-30%). This is the consequence of the star cluster having a density profile steeper than that of the residual gas. However, in terms of the effective SFE, measured by the virial ratio of the cluster at gas expulsion, our results are in agreement with previous studies.
We study the evolution of star clusters in the Galactic tidal field starting from their birth in molecular clumps. Our model clusters form according to the local-density-driven cluster formation model in which the stellar density profile is steeper t han that of gas. As a result, clusters resist the gas expulsion better than predicted by earlier models. We vary the impact of the Galactic tidal field {lambda}, considering different Galactocentric distances (3-18 kpc), as well as different cluster sizes. Our model clusters survive the gas expulsion independent of {lambda}. We investigated the relation between the cluster mass at the onset of secular evolution and their dissolution time. The model clusters formed with a high star-formation efficiency (SFE) follow a tight mass-dependent dissolution relation, in agreement with previous theoretical studies. However, the low-SFE models present a shallower mass-dependent relation than high-SFE clusters, and most dissolve before reaching 1 Gyr (cluster teenage mortality).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا