ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonons correlation with magnetic excitations in weak ferromagnet YCrO3

31   0   0.0 ( 0 )
 نشر من قبل Yogesh Sharma
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the temperature dependent Raman spectroscopic studies of orthorombic distorted perovskite YCrO3 in the temperature range of 20-300K. Temperature dependence of DC-magnetization measurement under field cooled and zero field cooled modes confirmed the transition temperature (TN ~142K) and anomalous characteristic temperature (T* ~60K), above which magnetization tends to saturate. Magnetization isotherm recorded below TN at 125K shows clear loop opening without magnetization saturation up to 20kOe, indicating the coexistence of antiferromagnetic (AFM) interaction with weak ferromagnetic (WFM) phase. Mean field calculation for exchange constants further confirms the complex magnetic phase below TN. Temperature evolution of lineshape parameters of selected modes (associated with the octahedral rotation and A-shift in the unit cell) revealed anomalous phonon shift near Cr3+ magnetic ordering temperature (TN ~142K). Additional phonon anomaly was identified at T* ~60K in agreement with the magnetization results and reflects the change in spin dynamics, plausibly due to the change in Cr-spin configuration. Moreover, the positive and negative shift in Raman frequency below TN revel the existence of competing WFM and AFM exchanges. The phonon shift of B3g (3)-octahedral rotation mode fairly scaled with the square of sublattice magnetization from TN to T*, below which it start to depart from theconventional behaviour and need further attention. This correlation between magnetic and Raman data elucidate the spin-phonon coupling owing to the multiferroic phenomenon in YCrO3.

قيم البحث

اقرأ أيضاً

The ZrSiS family of compounds hosts various exotic quantum phenomena due to the presence of both topological nonsymmorphic Dirac fermions and nodal-line fermions. In this material family, the LnSbTe (Ln= lanthanide) compounds are particularly interes ting owing to the intrinsic magnetism from magnetic Ln which leads to new properties and quantum states. In this work, the authors focus on the previously unexplored compound SmSbTe. The studies reveal a rare combination of a few functional properties in this material, including antiferromagnetism with possible magnetic frustration, electron correlation enhancement, and Dirac nodal-line fermions. These properties enable SmSbTe as a unique platform to explore exotic quantum phenomena and advanced functionalities arising from the interplay between magnetism, topology, and electronic correlations.
Thin films of topological insulator Bi_2Se_3 were deposited directly on insulating ferromagnetic EuS. Unusual negative magnetoresistance was observed near the zero field below the Curie temperature (T_C), resembling the weak localization effect; wher eas the usual positive magnetoresistance was recovered above T_C. Such negative magnetoresistance was only observed for Bi_2Se_3 layers thinner than t~4nm, when its top and bottom surfaces are coupled. These results provide evidence for a proximity effect between a topological insulator and an insulating ferromagnet, laying the foundation for future realization of the half-integer quantized anomalous Hall effect in three-dimensional topological insulators.
Using a combination of density functional theory (DFT) and spin-wave theory methods, we investigate the magnetic interactions and spin excitations in semiconducting VI$_3$. Exchange parameters of monolayer, bilayer, and bulk forms are evaluated by ma pping the magnetic energies of various spin configurations, calculated using DFT+$U$, onto the Heisenberg model. The intralayer couplings remain largely unchanged in three forms of VI$_3$, while the interlayer couplings show stronger dependence on the dimensionality of the materials. We calculate the spin-wave spectra within a linear spin-wave theory and discuss how various exchange parameters affect the magnon bands. The magnon-magnon interaction is further incorporated, and the Curie temperature is estimated using a self-consistently renormalized spin-wave theory. To understand the roles of constituent atoms on magnetocrystalline anisotropy energy (MAE), we resolve MAE into sublattices and find that a strong negative V-I inter-sublattice contribution is responsible for the relatively small easy-axis MAE in VI$_3$.
Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical thickness of the AFM thin films and the measurement temperature, bimetallic Mn-based alloys and transition met al oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferromagnetic (FM)/AFM-based heterostructures can result in unusual magnetic and magnetotransport phenomena. Here, we integrate chemically disordered AFM IrMn3 thin films with coexisting AFM phases into complex exchange coupled MgO(001)/Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures and study the structural, magnetic, and magnetotransport properties in various magnetic field cooling states. In particular, we unveil the impact of rotating the relative orientation of the disordered and reversible AFM moments with respect to the irreversible AFM moments on the magnetic and magnetoresistance properties of the exchange coupled heterostructures. We further found that the persistence of AFM grains with thermally disordered and reversible AFM order is crucial for achieving highly tunable magnetic properties and multi-level magnetoresistance states. We anticipate that the introduced approach and the heterostructure architecture can be utilized in future spintronic devices to manipulate the thermally disordered and reversible AFM order at the nanoscale.
85 - Xinxin Cai , Jin Yue , Peng Xu 2020
Quantum corrections to electrical resistance can serve as sensitive probes of the magnetic landscape of a material. For example, interference between time-reversed electron paths gives rise to weak localization effects, which can provide information about the coupling between spins and orbital motion, while the Kondo effect is sensitive to the presence of spin impurities. Here we use low-temperature magnetotransport measurements to reveal a transition from weak antilocalization (WAL) to Kondo scattering in the quasi-two-dimensional electron gas formed at the interface between SrTiO$_3$ and the Mott insulator NdTiO$_3$. This transition occurs as the thickness of the NdTiO$_3$ layer is increased. Analysis of the Kondo scattering and WAL points to the presence of atomic-scale magnetic impurities coexisting with extended magnetic regions that affect transport via a strong magnetic exchange interaction. This leads to distinct magnetoresistance behaviors that can serve as a sensitive probe of magnetic properties in two dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا