ﻻ يوجد ملخص باللغة العربية
The blowup is studied for the nonlinear Schr{o}dinger equation $iu_{t}+Delta u+ |u|^{p-1}u=0$ with $p$ is odd and $pge 1+frac 4{N-2}$ (the energy-critical or energy-supercritical case). It is shown that the solution with negative energy $E(u_0)<0$ blows up in finite or infinite time. A new proof is also presented for the previous result in cite{HoRo2}, in which a similar result but more general in a case of energy-subcritical was shown.
This paper is concerned with the derivative nonlinear Schr{o}dinger equation with periodic boundary conditions. We obtain complete Birkhoff normal form of order six. As an application, the long time stability for solutions of small amplitude is proved.
We study the inverse scattering problem for the three dimensional nonlinear Schroedinger equation with the Yukawa potential. The nonlinearity of the equation is nonlocal. We reconstruct the potential and the nonlinearity by the knowledge of the scatt
We consider the large time behavior in two types of equations, posed on the whole space R^d: the Schr{o}dinger equation with a logarithmic nonlinearity on the one hand; compressible, isothermal, Euler, Korteweg and quantum Navier-Stokes equations on
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asy
The Cauchy problem of the modified nonlinear Schr{o}dinger (mNLS) equation with the finite density type initial data is investigated via $overline{partial}$ steepest descent method. In the soliton region of space-time $x/tin(5,7)$, the long-time asym