ترغب بنشر مسار تعليمي؟ اضغط هنا

Fouriers law from a chain of coupled planar harmonic oscillators under energy conserving noise

237   0   0.0 ( 0 )
 نشر من قبل Gabriel Landi Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the transport of heat along a chain of particles interacting through a harmonic potential and subject to heat reservoirs at its ends. Each particle has two degrees of freedom and is subject to a stochastic noise that produces infinitesimal changes in the velocity while keeping the kinetic energy unchanged. This is modelled by means of a Langevin equation with multiplicative noise. We show that the introduction of this energy conserving stochastic noise leads to Fouriers law. By means of an approximate solution that becomes exact in the thermodynamic limit, we also show that the heat conductivity $kappa$ behaves as $kappa = a L/(b+lambda L)$ for large values of the intensity $lambda$ of the energy conserving noise and large chain sizes $L$. Hence, we conclude that in the thermodynamic limit the heat conductivity is finite and given by $kappa=a/lambda$.



قيم البحث

اقرأ أيضاً

We analyze the transport of heat along a chain of particles interacting through anharmonic po- tentials consisting of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle is also subject to a n impulsive shot noise with exponentially distributed waiting times whose effect is to change the sign of its velocity, thus conserving the en- ergy of the chain. We show that the introduction of this energy conserving stochastic noise leads to Fourier law. The behavior of thels heat conductivity for small intensities of the shot noise and large system sizes are found to obey a finite-size scaling relation. We also show that the heat conductivity is not constant but is an increasing monotonic function of temperature.
139 - James W. Dufty 2007
Newton viscosity law for the momentum flux and Fouriers law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newtons viscosity law. However, theory predicts a qualitative difference for Fouriers law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.
Systems in which the heat flux depends on the direction of the flow are said to present thermal rectification. This effect has attracted much theoretical and experimental interest in recent years. However, in most theoretical models the effect is fou nd to vanish in the thermodynamic limit, in disagreement with experiment. The purpose of this paper is to show that the rectification may be restored by including an energy-conserving noise which randomly flips the velocity of the particles with a certain rate $lambda$. It is shown that as long as $lambda$ is non-zero, the rectification remains finite in the thermodynamic limit. This is illustrated in a classical harmonic chain subject to a quartic pinning potential (the $Phi^4$ model) and coupled to heat baths by Langevin equations.
177 - Cedric Bernardin 2014
We consider a harmonic chain perturbed by an energy conserving noise and show that after a space-time rescaling the energy-energy correlation function is given by the solution of a skew-fractional heat equation with exponent 3/4.
We give a rigorous derivation of Fouriers law from a system of closure equations for a nonequilibrium stationary state of a Hamiltonian system of coupled oscillators subjected to heat baths on the boundary. The local heat flux is proportional to the temperature gradient with a temperature dependent heat conductivity and the stationary temperature exhibits a nonlinear profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا