ﻻ يوجد ملخص باللغة العربية
Simple and efficient lambda-method and lambda/2-method (lambda is the resonant wavelength of laser radiation) based on nanometric-thickness cell filled with rubidium are implemented to study the splitting of hyperfine transitions of 85Rb and 87Rb D_1 line in an external magnetic field in the range of B = 0.5 - 0.7 T. It is experimentally demonstrated from 20 (12) Zeeman transitions allowed at low B-field in 85Rb (87Rb) spectra in the case of sigma+ polarized laser radiation, only 6 (4) remain at B > 0.5 T, caused by decoupling of the total electronic momentum J and the nuclear spin momentum I (hyperfine Paschen-Back regime). The expressions derived in the frame of completely uncoupled basis (J, m_J ; I, m_I) describe very well the experimental results for 85Rb transitions at $B > 0.6 T (that is a manifestation of hyperfine Paschen-Back regime). A remarkable result is that the calculations based on the eigenstates of coupled (F, m_F) basis, which adequately describe the system for low magnetic field, also predict reduction of number of transition components from 20 to 6 for 85Rb, and from 12 to 4 for 87Rb spectrum at B > 0.5 T. Also, the Zeeman transitions frequency shift, frequency interval between the components and their slope versus $B$ are in agreement with the experiment.
We demonstrate a technique to lock simultaneously two laser frequencies to each step of a two-photon transition in the presence of a magnetic field sufficiently large to gain access to the hyperfine Paschen-Back regime. A ladder configuration with th
An efficient $lambda/2$-method ($lambda$ is the resonant wavelength of laser radiation) based on nanometric-thickness cell filled with rubidium is implemented to study the splitting of hyperfine transitions of $^{85}$Rb and $^{87}$Rb $D_2$ lines in a
Selective reflection of a laser radiation from an interface formed by a dielectric window and a potassium atomic vapour confined in a nano-cell with $350~$nm gap thickness is implemented for the first time to study the atomic transitions of K D$_2$ l
A one-dimensional nano-metric-thin cell (NC) filled with potassium metal has been built and used to study optical atomic transitions in external magnetic fields. These studies benefit from the remarkable features of the NC allowing one to use $lambda
We have shown that it is possible to model accurately optical phenomena in intense laser fields by taking into account the intensity distribution over the laser beam. We developed a theoretical model that divided an intense laser beam into concentric