ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of transport in higher dimensional systems via dynamical decoupling of degrees of freedom with quasiperiodic driving fields

132   0   0.0 ( 0 )
 نشر من قبل David Cubero
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of the control of transport in higher dimensional periodic structures by applied ac fields. In a generic crystal, transverse degrees of freedom are coupled, and this makes the control of motion difficult to implement. We show, both with simulations and with an analytical functional expansion on the driving amplitudes, that the use of quasiperiodic driving significantly suppresses the coupling between transverse degrees of freedom. This allows a precise control of the transport, and does not require a detailed knowledge of the crystal geometry.

قيم البحث

اقرأ أيضاً

We study the behavior of a moving wall in contact with a particle gas and subjected to an external force. We compare the fluctuations of the system observed in the microcanonical and canonical ensembles, at varying the number of particles. Static and dynamic correlations signal significant differences between the two ensembles. Furthermore, velocity-velocity correlations of the moving wall present a complex two-time relaxation which cannot be reproduced by a standard Langevin-like description. Quite remarkably, increasing the number of gas particles in an elongated geometry, we find a typical timescale, related to the interaction between the partitioning wall and the particles, which grows macroscopically.
We present a theory of spinor superfluidity in a two-species heteronuclear ultracold fermionic atomic gas consisting of arbitrary half-integer spin and one-half spin atoms. In particular, we focus on the magnetism of the superfluid phase and determin e the possible phases in the absence of a magnetic field. Our work demonstrates similarities between heteronuclear fermionic superfluids and spinor Bose-Einstein condensates at the mean-field level. Possible experimental situations are discussed.
231 - Masaru Siino 2015
A homogeneous two-dimensional metric including the degrees of freedom of Teichmuller deformation is developed. The Teichmuller deformation is incorporated by affine stretching of complex structure. According to Yamadas investigation by pinching param eter, concrete formulation for a higher genus Riemann surface can be realized. We will have a homogeneous standard metric including the dynamical degrees of freedom as Teichmuller deformation in a leading order of the pinching parameter, which would be treated as homogeneous anisotropic metric for a double torus universe, which satisfy momentum constraints.
We consider dynamical decoupling schemes in which the qubit is continuously manipulated by a control field at all times. Building on the theory of the Uhrig Dynamical Decoupling sequence (UDD) and its connections to Chebyshev polynomials, we derive a method of always-on control by expressing the UDD control field as a Fourier series. We then truncate this series and numerically optimize the series coefficients for decoupling, constructing the CAFE (Chebyshev and Fourier Expansion) sequence. This approach generates a bounded, continuous control field. We simulate the decoupling effectiveness of our sequence vs. a continuous version of UDD for a qubit coupled to fully-quantum and semi-classical dephasing baths and find comparable performance. We derive filter functions for continuous-control decoupling sequences, and we assess how robust such sequences are to noise on control fields. The methods we employ provide a variety of tools to analyze continuous-control dynamical decoupling sequences.
The interplay of structural and electronic phases in iron-based superconductors is a central theme in the search for the superconducting pairing mechanism. While electronic nematicity, defined as the breaking of four-fold symmetry triggered by electr onic degrees of freedom, is competing with superconductivity, the effect of purely structural orthorhombic order is unexplored. Here, using x-ray diffraction (XRD), we reveal a new structural orthorhombic phase with an exceptionally high onset temperature ($T_mathrm{ort} sim 250$ K), which coexists with superconductivity ($T_mathrm{c} = 25$ K), in an electron-doped iron-pnictide superconductor far from the underdoped region. Furthermore, our angle-resolved photoemission spectroscopy (ARPES) measurements demonstrate the absence of electronic nematic order as the driving mechanism, in contrast to other underdoped iron pnictides where nematicity is commonly found. Our results establish a new, high temperature phase in the phase diagram of iron-pnictide superconductors and impose strong constraints for the modeling of their superconducting pairing mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا