ترغب بنشر مسار تعليمي؟ اضغط هنا

High fidelity spin entanglement using optimal control

126   0   0.0 ( 0 )
 نشر من قبل Ville Bergholm
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise control of quantum systems is of fundamental importance for quantum device engineering, such as is needed in the fields of quantum information processing, high-resolution spectroscopy and quantum metrology. When scaling up the quantum registers in such devices, several challenges arise: individual addressing of qubits in a dense spectrum while suppressing crosstalk, creation of entanglement between distant nodes, and decoupling from unwanted interactions. The experimental implementation of optimal control is a prerequisite to meeting these challenges. Using engineered microwave pulses, we experimentally demonstrate optimal control of a prototype solid state spin qubit system comprising thirty six energy levels. The spin qubits are associated with proximal nitrogen-vacancy (NV) centers in diamond. We demonstrate precise single-electron spin qubit operations with an unprecedented fidelity F approx 0.99 in combination with high-efficiency storage of electron spin states in a nuclear spin quantum memory. Matching single-electron spin operations with spin-echo techniques, we further realize high-quality entangled states (F > 0.82) between two electron spins on demand. After exploiting optimal control, the fidelity is mostly limited by the coherence time and imperfect initialization. Errors from crosstalk in a crowded spectrum of 8 lines as well as detrimental effects from active dipolar couplings have been simultaneously eliminated to unprecedented extent. Finally, by entanglement swapping to nuclear spins, nuclear spin entanglement over a length scale of 25 nm is demonstrated. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.



قيم البحث

اقرأ أيضاً

376 - Yuchen Peng , Frank Gaitan 2017
We present an approach to single-shot high-fidelity preparation of an $n$-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produc e single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two qubit Bell state $|beta_{01}rangle = (1/sqrt{2})left[, |01rangle + |10rangle,right]$ with an error probability $epsilonsim 10^{-6}$ ($10^{-5}$) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state $|overline{beta}_{01}rangle$.
Optically interfaced spins in the solid promise scalable quantum networks. Robust and reliable optical properties have so far been restricted to systems with inversion symmetry. Here, we release this stringent constraint by demonstrating outstanding optical and spin properties of single silicon vacancy centres in silicon carbide. Despite the lack of inversion symmetry, the systems particular wave function symmetry decouples its optical properties from magnetic and electric fields, as well as from local strain. This provides a high-fidelity spin-to-photon interface with exceptionally stable and narrow optical transitions, low inhomogeneous broadening, and a large fraction of resonantly emitted photons. Further, the weak spin-phonon coupling results in electron spin coherence times comparable with nitrogen-vacancy centres in diamond. This allows us to demonstrate coherent hyperfine coupling to single nuclear spins, which can be exploited as qubit memories. Our findings promise quantum network applications using integrated semiconductor-based spin-to-photon interfaces.
Transition metal ions provide a rich set of optically active defect spins in wide bandgap semiconductors. Chromium (Cr4+) in silicon-carbide (SiC) produces a spin-1 ground state with a narrow, spectrally isolated, spin-selective, near-telecom optical interface. However, previous studies were hindered by material quality resulting in limited coherent control. In this work, we implant Cr into commercial 4H-SiC and show optimal defect activation after annealing above 1600 C. We measure an ensemble optical hole linewidth of 31 MHz, an order of magnitude improvement compared to as-grown samples. An in-depth exploration of optical and spin dynamics reveals efficient spin polarization, coherent control, and readout with high fidelity (79%). We report T1 times greater than 1 second at cryogenic temperatures (15 K) with a T2* = 317 nanoseconds and a T2 = 81 microseconds, where spin dephasing times are currently limited by spin-spin interactions within the defect ensemble. Our results demonstrate the potential of Cr4+ in SiC as an extrinsic, optically active spin qubit.
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a mechanis m for high-fidelity spin-to-photon conversion, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here we demonstrate a high-fidelity spin-to-photon interface in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin-mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on shows promise for future quantum networks based on SiC defects.
102 - Shu-Hao Wu , Mayra Amezcua , 2019
We report theoretical studies of adiabatic population transfer using dressed spin states. Quantum optimal control using the algorithm of Chopped Random Basis (CRAB) has been implemented in a negatively charged diamond nitrogen vacancy center that is coupled to a strong and resonant microwave field. We show that the dressed spin states are highly effective in suppressing effects of spin dephasing on adiabatic population transfer. The numerical simulation also demonstrates that CRAB-based quantum optimal control can enable an efficient and robust adiabatic population transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا