ﻻ يوجد ملخص باللغة العربية
We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.
Symbiotic stars in which the symbiotic phenomenon is powered solely by accretion, often at an average rate that is higher than in cataclysmic variable stars, provide an important opportunity to diagnose boundary layers around disk-accreting white dwa
Compared to mass transfer in cataclysmic variables, the nature of accretion in symbiotic binaries in which red giants transfer material to white dwarfs (WDs) has been difficult to uncover. The accretion flows in a symbiotic binary are most clearly ob
Sunspots are known to be strong absorbers of solar oscillation modal power. The most convincing way to demonstrate this is done via Fourier-Hankel decomposition (FHD), where the local oscillation field is separated into in- and outgoing waves, showin
We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above
We carry out a spectral analysis of the archival FUSE spectrum of the VY Scl nova-like cataclysmic variable MV Lyrae obtained in the high state. We find that standard disk models fail to fit the flux in the shorter wavelengths of FUSE (< 950$A). An i