ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization in QED and QFT with a Lorentz- and CPT-violating backgrounds

208   0   0.0 ( 0 )
 نشر من قبل Ilya Lvovich Shapiro
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Ilya L. Shapiro




اسأل ChatGPT حول البحث

The general features of renormalization and the renormalization group in QED and in general quantum field theories in curved spacetime with additional Lorentz- and CPT-violating background fields are reviewed.



قيم البحث

اقرأ أيضاً

Radiative corrections in quantum field theories with small departures from Lorentz symmetry alter structural aspects of the theory, in particular the definition of asymptotic single-particle states. Specifically, the mass-shell condition, the standar d renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism are affected.
This paper presents divergent contributions of the radiative corrections for a Lorentz-violating extension of the scalar electrodynamics. We initially discuss some features of the model and extract the Feynman rules. Then we compute the one-loop radi ative corrections using Feynman parametrization and dimensional regularization in order to evaluate the integrals. We also discuss Furrys theorem validity and renormalization in the present context.
We investigate an alternative CPT-odd Lorentz-breaking QED which includes the Carroll-Field-Jackiw (CFJ) term of the Standard Model Extension (SME), writing the gauge sector in the action in a Palatini-like form, in which the vectorial field and the field-strength tensor are treated as independent entities. Interestingly, this naturally induces a Lorentz-violating mass term in the classical action. We study physical consistency aspects of the model both at classical and quantum levels.
The radiative induction of the CPT and Lorentz violating Chern-Simons (CS) term is reassessed. The massless and massive models are studied. Special attention is given to the preservation of gauge symmetry at higher orders in the background vector $b_ mu$ when radiative corrections are considered. Both the study of the odd and even parity sectors of the complete vacuum polarization tensor at one-loop order and a non-perturbative analysis show that this symmetry must be preserved by the quantum corrections. As a complement we obtain that transversality of the polarization tensor does not fix the value of the coefficient of the induced CS term.
Lorentz and CPT violation in hadronic physics must be tied to symmetry violations at the underlying quark and gluon level. Chiral perturbation theory provides a method for translating novel operators that may appear in the Lagrange density for color- charged parton fields into equivalent forms for effective theories at the meson and baryon levels. We extend the application of this technique to the study of Lorentz-violating and potentially CPT-violating operators from the minimal standard model extension. For dimension-4 operators, there are nontrivial relations between the coefficients of baryon-level operators related to underlying quark and gluon operators with the same Lorentz structures. Moreover, in the mapping of the dimension-3 operators from the quark and gluon level to the hadron level (considered here for the first time), many of the hadronic observables contain no new low-energy coupling constants at all, which makes it possible to make direct translations of bounds derived using experiments on one kind of hadron into bounds in a completely different corner of the hadronic sector. A notable consequence of this is bounds (at $10^{-15}$-$10^{-20}$ GeV levels) on differences $a^{mu}_{B}-a^{mu}_{B}$ of Lorentz and CPT violation coefficients for $SU(3)_{f}$ octet baryons that differ in their structure by the replacement of a single valance $d$ quark by a $s$ quark. Never before has there been any proposal for how these kinds of differences could be constrained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا