ﻻ يوجد ملخص باللغة العربية
We demonstrate a compact and robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multi-cavity block is employed, and, for each laser, the sideband locking technique is applied. Useful features of the system are a negligible lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral atom lattice clock. The device significantly supports and improves the operation of the clock. The laser with the most stringent requirements imposed by this application is stabilized to a linewidth of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.
An experimental method is developed for the robust frequency stabilization using a high-finesse cavity when the laser exhibits large intermittent frequency jumps. This is accomplished by applying an additional slow feedback signal from Doppler-free f
We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a st
Demand for low-noise, continuous-wave, frequency-tunable lasers based on semiconductor integrated photonics has been advancing in support of numerous applications. In particular, an important goal is to achieve narrow spectral linewidth, commensurate
High-order frequency locking phenomena were recently observed using semiconductor lasers subject to large delayed feedbacks [B. Tykalewicz, et al., Opt. Express 24, 4239 (2016); B. Kelleher, et al., Chaos 27, 114325 (2017)]. Specifically, the relaxat
Ultraviolet (UV) diode lasers are widely used in many photonics applications. But their frequency stabilization schemes are not as mature as frequency-doubling lasers, mainly due to some limitations in the UV spectral region. Here we developed a high