ترغب بنشر مسار تعليمي؟ اضغط هنا

Validation of the equilibrium model for galaxy evolution to z~3 through molecular gas and dust observations of lensed star-forming galaxies

40   0   0.0 ( 0 )
 نشر من قبل Amelie Saintonge
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine IRAM Plateau de Bure Interferometer and Herschel PACS and SPIRE measurements to study the dust and gas contents of high-redshift star forming galaxies. We present new observations for a sample of 17 lensed galaxies at z=1.4-3.1, which allow us to directly probe the cold ISM of normal star-forming galaxies with stellar masses of ~10^10Msun, a regime otherwise not (yet) accessible by individual detections in Herschel and molecular gas studies. The lensed galaxies are combined with reference samples of sub-millimeter and normal z~1-2 star-forming galaxies with similar far-infrared photometry to study the gas and dust properties of galaxies in the SFR-M*-redshift parameter space. The mean gas depletion timescale of main sequence galaxies at z>2 is measured to be only ~450Myr, a factor of ~1.5 (~5) shorter than at z=1 (z=0), in agreement with a (1+z)^-1 scaling. The mean gas mass fraction at z=2.8 is 40+/-15% (44% after incompleteness correction), suggesting a flattening or even a reversal of the trend of increasing gas fractions with redshift recently observed up to z~2. The depletion timescale and gas fractions of the z>2 normal star-forming galaxies can be explained under the equilibrium model for galaxy evolution, in which the gas reservoir of galaxies is the primary driver of the redshift evolution of specific star formation rates. Due to their high star formation efficiencies and low metallicities, the z>2 lensed galaxies have warm dust despite being located on the star formation main sequence. At fixed metallicity, they also have a gas-to-dust ratio 1.7 times larger than observed locally when using the same standard techniques, suggesting that applying the local calibration of the relation between gas-to-dust ratio and metallicity to infer the molecular gas mass of high redshift galaxies may lead to systematic differences with CO-based estimates.

قيم البحث

اقرأ أيضاً

94 - S. Berta , D. Lutz , R. Nordon 2013
We use deep far-infrared data from the PEP/GOODS-Herschel surveys and rest frame ultraviolet photometry to study the evolution of the molecular gas mass function of normal star forming galaxies. Computing the molecular gas mass, M(mol), by scaling st ar formation rates (SFR) through depletion timescales, or combining IR luminosity and obscuration properties as in Nordon et al., we obtain M(mol) for roughly 700, z=0.2-3.0 galaxies near the star forming main sequence. The number density of galaxies follows a Schechter function of M(mol). The characteristic mass M* is found to strongly evolve up to z~1, and then to flatten at earlier epochs, resembling the infrared luminosity evolution of similar objects. At z~1, our result is supported by an estimate based on the stellar mass function of star forming galaxies and gas fraction scalings from the PHIBSS survey. We compare our measurements to results from current models, finding better agreement with those that are treating star formation laws directly rather than in post-processing. Integrating the mass function, we study the evolution of the M(mol) density and its density parameter Omega(mol).
Multi-wavelength, optical to IR/sub-mm observations of 5 strongly lensed galaxies identified by the Herschel Lensing Survey, plus two well-studied lensed galaxies, MS1512-cB58 and the Cosmic Eye, for which we also provide updated Herschel measurement s, are used to determine the physical properties of z~1.5-3 star-forming galaxies close to or below the detection limits of blank fields. We constrain their stellar and dust content, determine star formation rates and histories, dust attenuation and extinction laws, and other related properties. We perform SED-fits of the full photometry of each object as well for the optical and infrared parts separately, exploring various parameters, including nebular emission. The IR observations and emission line measurements, where available, are used a posteriori constraints on the models. Besides the various stellar population models we explore, we use the observed IR/UV ratio to estimate the extinction and create energy conserving models, that constrain most accurately the physical properties of our sources. Our sample has a median lensing-corrected IR luminosity ~ 3e11 Lsun, stellar masses between 2e9 and 2e11 Msun, and IR/UV luminosity ratios spanning a wide range. The dust masses of our galaxies are in the range 2 to 17e7 Msun, extending previous studies at the same redshift down to lower masses. We do not find any particular trend of the dust temperature Tdust with IR luminosity, suggesting an overall warmer dust regime at our redshift regardless of luminosity. Lensing enables us to study the detailed physical properties of individual IR-detected z~1.5-3 galaxies up to a factor ~10 fainter than achieved with deep blank field observations. We demonstrate that multi-wavelength observations combining stellar and dust emission can constrain star formation histories and extinction laws of star-forming galaxies.
We present millimetre dust emission measurements of two Lyman Break Galaxies at z~3 and construct for the first time fully sampled infrared spectral energy distributions (SEDs), from mid-IR to the Rayleigh-Jeans tail, of individually detected, unlens ed, UV-selected, main sequence (MS) galaxies at $z=3$. The SED modelling of the two sources confirms previous findings, based on stacked ensembles, of an increasing mean radiation field <U> with redshift, consistent with a rapidly decreasing gas metallicity in z > 2 galaxies. Complementing our study with CO[3-2] emission line observations, we measure the molecular gas mass (M_H2) reservoir of the systems using three independent approaches: 1) CO line observations, 2) the dust to gas mass ratio vs metallicity relation and 3) a single band, dust emission flux on the Rayleigh-Jeans side of the SED. All techniques return consistent M_H2 estimates within a factor of ~2 or less, yielding gas depletion time-scales (tau_dep ~ 0.35 Gyrs) and gas-to-stellar mass ratios (M_H2/M* ~ 0.5-1) for our z~3 massive MS galaxies. The overall properties of our galaxies are consistent with trends and relations established at lower redshifts, extending the apparent uniformity of star-forming galaxies over the last 11.5 billion years.
70 - L.J.Tacconi , R.Neri , R.Genzel 2012
We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in normal star forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z~1. 2 and 2.2, with log(M*(M_solar))>10.4 and log(SFR(M_solar/yr))>1.5. Including a correction for the incomplete coverage of the M*-SFR plane, we infer average gas fractions of ~0.33 at z~1.2 and ~0.47 at z~2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z~1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular gas - star formation relation for the z=1-3 SFGs is near-linear, with a ~0.7 Gyrs gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z~0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M*, gas fractions correlate strongly with the specific star formation rate. The variation of specific star formation rate between z~0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.
We report on the galaxy MACSJ0032-arc at z=3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACSJ0032.1+1808. The successful detections of its rest-frame UV, optical, FIR, mi llimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8x10^9 Msun, and a moderate IR luminosity of 4.8x10^11 Lsun. We find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(4-3) and CO(6-5) lines demonstrate that high-J transitions, at least up to J=6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H2 conversion factor. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by galaxy evolution models. Instead, the measured molecular gas fraction as high as 60-79% in MACSJ0032-arc favors the continued increase in the gas fraction of galaxies with redshift as expected, despite the plateau observed between z~1.5 and z~2.5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا