ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical study of level crossings in the Stark-Zeeman spectrum of ground state OH

54   0   0.0 ( 0 )
 نشر من قبل Mishkatul Bhattacharya
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ground electronic, vibrational and rotational state of the OH molecule is currently of interest as it can be manipulated by electric and magnetic fields for experimental studies in ultracold chemistry and quantum degeneracy. Based on our recent exact solution of the corresponding effective Stark-Zeeman Hamiltonian, we present an analytical study of the crossings and avoided crossings in the spectrum. These features are relevant to non-adiabatic transitions, conical intersections and Berry phases. Specifically, for an avoided crossing employed in the evaporative cooling of OH, we compare our exact results to those derived earlier from perturbation theory.

قيم البحث

اقرأ أيضاً

Energy levels of nitrogen-vacancy centers in diamond were investigated using optically detected magnetic-resonance spectroscopy near the electronic ground-state level anticrossing (GSLAC) at an axial magnetic field around 102.4~mT in diamond samples with a nitrogen concentration of 1~ppm and 200~ppm. By applying radiowaves in the frequency ranges from 0 to 40 MHz and from 5.6 to 5.9 GHz, we observed transitions that involve energy levels mixed by the hyperfine interaction. We developed a theoretical model that describes the level mixing, transition energies, and transition strengths between the ground-state sublevels, including the coupling to the nuclear spin of the NV centertextquotesingle s $^{14}$N and $^{13}$C atoms. The calculations were combined with the experimental results by fitting the ODMR spectral lines based on a theoretical model, which yielded information about the polarization of nuclear spins. This study is important for the optimization of experimental conditions in GSLAC-based applications, e.g., microwave-free magnetometry and microwave-free nuclear-magnetic-resonance probes.
64 - M. Bhattacharya , Z. Howard , 2013
The OH molecule is currently of great interest from the perspective of ultracold chemistry, quantum fluids, precision measurement and quantum computation. Crucial to these applications are the slowing, guiding, confinement and state control of OH, us ing electric and magnetic fields. In this article, we show that the corresponding eight-dimensional effective ground state Stark-Zeeman Hamiltonian is exactly solvable and explicitly identify the underlying chiral symmetry. Our analytical solution opens the way to insightful characterization of the magnetoelectrostatic manipulation of ground state OH. Based on our results, we also discuss a possible application to the quantum simulation of an imbalanced Ising magnet.
We investigate single ions of $^{40}Ca^+$ in Paul traps for quantum information processing. Superpositions of the S$_{1/2}$ electronic ground state and the metastable D$_{5/2}$ state are used to implement a qubit. Laser light on the S$_{1/2} leftrigh tarrow$ D$_{5/2}$ transition is used for the manipulation of the ions quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state $|n=0>$, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.
410 - Z. Kim , V. Zaretskey , Y. Yoon 2008
We have observed a few distinct anomalous avoided level crossings and voltage dependent transitions in the excited state spectrum of an Al/AlOx/Al Cooper-pair box (CPB). The device was measured at 40 mK in the 15 - 50 GHz frequency range. We find tha t a given level crosses the CPB spectrum at two different gate voltages; the frequency and splitting size of the two crossings differ and the splitting size depends on the Josephson energy of the CPB. We show that this behavior is not only consistent with the CPB being coupled to discrete charged two-level quantum systems which move atomic distances in the CPB junctions but that the spectra provide new information about the fluctuators, which is not available from phase qubit spectra of anomalous avoided levels. In particular by fitting a model Hamiltonian to our data, we extract microscopic parameters for each fluctuator, including well asymmetry, tunneling amplitude, and the minimum hopping distance for each fluctuator. The tunneling rates range from less than 3.5 to 13 GHz, which represent values between 5% and 150% of the well asymmetry, and the dipole moments give a minimum hopping distance of 0.3 to 0.8 Anstrom. We have also found that these discrete two-level systems have a pronounced effect on the relaxation time (T1) of the quantum states of the CPB and hence can be a source of dissipation for superconducting quantum bits.
Optically addressable paramagnetic defects in wide-band-gap semiconductors are promising platforms for quantum communications and sensing. The presence of avoided crossings between the electronic levels of these defects can substantially alter their quantum dynamics and be both detrimental and beneficial for quantum information applications. Avoided crossings give rise to clock transitions, which can significantly improve protection from magnetic noise and favorably increase coherence time. However, the reduced coupling between electronic and nuclear spins at an avoided crossing may be detrimental to applications where nuclear spins act as quantum memories. Here we present a combined theoretical and experimental study of the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings. We develop a computational approach based on a generalization of the cluster expansion technique, which can account for processes beyond pure dephasing and describe the dynamics of any solid-state spin-qubits near avoided crossings. Using this approach and experimental validation, we determine the change in nature and source of noise at avoided crossings for divacancies in SiC. We find that we can condition the clock transition of the divacancies in SiC on multiple adjacent nuclear spins states. In our experiments, we demonstrate that one can suppress the effects of fluctuating charge impurities with depletion techniques, leading to an increased coherence time at clock transition, limited purely by magnetic noise. Combined with ab-initio predictions of spin Hamiltonian parameters, the proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا