ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control

113   0   0.0 ( 0 )
 نشر من قبل Daniel Oblak
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future multi-photon applications of quantum optics and quantum information science require quantum memories that simultaneously store many photon states, each encoded into a different optical mode, and enable one to select the mapping between any input and a specific retrieved mode during storage. Here we show, with the example of a quantum repeater, how to employ spectrally-multiplexed states and memories with fixed storage times that allow such mapping between spectral modes. Furthermore, using a Ti:Tm:LiNbO3 waveguide cooled to 3 Kelvin, a phase modulator, and a spectral filter, we demonstrate storage followed by the required feed-forward-controlled frequency manipulation with time-bin qubits encoded into up to 26 multiplexed spectral modes and 97% fidelity.

قيم البحث

اقرأ أيضاً

We propose and experimentally demonstrate a novel approach to a heralded single photon source based on spectral multiplexing (SMUX) and feed-forward-based spectral manipulation of photons created by means of spontaneous parametric down-conversion in a periodically-poled LiNbO3 crystal. As a proof-of-principle, we show that our 3-mode SMUX increases the heralded single-photon rate compared to that of the individual modes without compromising the quality of the emitted single-photons. We project that by adding further modes, our approach can lead to a deterministic SPS.
83 - D. Main , T. M. Hird , S. Gao 2020
We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb quantum memory protocol in a room temperature alkali vapour. We utilise velocity-selective optical pumping to prepare multiple velocity classes in the $F=4$ hyperfine ground state of caesium. The frequency spacing of the classes is chosen to coincide with the $F=4 - F=5$ hyperfine splitting of the $6^2$P$_{3/2}$ excited state resulting in a broadband periodic absorbing structure consisting of two usually Doppler-broadened optical transitions. Weak coherent states of duration $2,mathrm{ns}$ are mapped into this atomic frequency comb with pre-programmed recall times of $8,mathrm{ns}$ and $12,mathrm{ns}$, with multi-temporal mode storage and recall demonstrated. Utilising two transitions in the comb leads to an additional interference effect upon rephasing that enhances the recall efficiency.
93 - Z. Zheng , O. Mishina , N. Treps 2014
We propose a Raman quantum memory scheme that uses several atomic ensembles to store and retrieve the multimode highly entangled state of an optical quantum frequency comb, such as the one produced by parametric down-conversion of a pump frequency co mb. We analyse the efficiency and the fidelity of such a quantum memory. Results show that our proposal may be helpful to multimode information processing using the different frequency bands of an optical frequency comb.
Due to their rich level structure, molecules are well-suited for probing time variation of fundamental constants, precisely measuring parity violation and time-reversal non-invariance effects, studying quantum mechanical aspects of chemical reactions , and implementing scalable quantum information processing architectures. Molecular ions are particularly attractive for these applications due to their long storage times and the near-perfect isolation from environment that result in long coherence times required to achieve high measurement precision and reduce systematic errors. However, the control of molecular quantum states remains a challenge. Based on quantum logic techniques, we propose a scheme for preparation, manipulation, and detection of quantum states of single molecular ions. The scheme relies on coherent coupling between internal and motional degrees of freedom of the molecular ion via a frequency comb laser field, while detection and cooling of the motion of ions is done via a co-trapped atomic ion.
We propose a new quantum numerical scheme to control the dynamics of a quantum walker in a two dimensional space-time grid. More specifically, we show how, introducing a quantum memory for each of the spatial grid, this result can be achieved simply by acting on the initial state of the whole system, and therefore can be exactly controlled once for all. As example we prove analytically how to encode in the initial state any arbitrary walkers mean trajectory and variance. This brings significantly closer the possibility of implementing dynamically interesting physics models on medium term quantum devices, and introduces a new direction in simulating aspects of quantum field theories (QFTs), notably on curved manifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا