ترغب بنشر مسار تعليمي؟ اضغط هنا

MSSM Higgs Self-Couplings: Two-Loop O(alpha_t alpha_s) Corrections

154   0   0.0 ( 0 )
 نشر من قبل Michael Spira
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the minimal supersymmetric Higgs self-couplings at O(alpha_t alpha_s) within the effective potential approach. The two-loop corrections turn out to be of moderate size in the DRbar scheme if the central scale is chosen as half the SUSY scale. The inclusion of the two-loop corrections reduces the renormalization scale dependence to the per-cent level. These results have a significant impact on measurements of the trilinear Higgs self-couplings at the LHC and a future e^+e^- collider.



قيم البحث

اقرأ أيضاً

We investigate predictions on the triple Higgs boson couplings with radiative corrections in the model with an additional real singlet scalar field. In this model, the second physical scalar state ($H$) appears in addition to the Higgs boson ($h$) wi th the mass 125 GeV. The $hhh$ vertex is calculated at the one-loop level, and its possible deviation from the predictions in the standard model is evaluated under various theoretical constraints. The decay rate of $H to hh$ is also computed at the one-loop level. We also take into account the bound from the precise measurement of the $W$ boson mass, which gives the upper limit on the mixing angle $alpha$ between two physical Higgs bosons for a given value of the mass of $H$ ($m_H^{}$). We find that the deviation in the $hhh$ coupling from the prediction in the standard model can maximally be about 250%, 150% and 75% for $m_H^{}=300$, 500 and 1000 GeV, respectively, under the requirement that the cutoff scale of the model is higher than 3 TeV. We also discuss deviations from the standard model prediction in double Higgs boson production from the gluon fusion at the LHC using the one-loop corrected Higgs boson vertices.
We compute the dominant two-loop corrections to the Higgs trilinear coupling $lambda_{hhh}$ and to the Higgs quartic coupling $lambda_{hhhh}$ in models with extended Higgs sectors, using the effective-potential approximation. We provide in this paper all necessary details about our calculations, and present general $overline{text{MS}}$ expressions for derivatives of the integrals appearing in the effective potential at two loops. We also consider three particular Beyond-the-Standard-Model (BSM) scenarios -- namely a typical scenario of an Inert Doublet Model (IDM), and scenarios of a Two-Higgs-Doublet Model (2HDM) and of a Higgs Singlet Model (HSM) without scalar mixing -- and we include all the necessary finite counterterms to obtain (in addition to $overline{text{MS}}$ results) on-shell scheme expressions for the corrections to the Higgs self-couplings. With these analytic results, we investigate the possible magnitude of two-loop BSM contributions to the Higgs self-couplings and the fate of the non-decoupling effects that are known to appear at one loop. We find that, at least as long as pertubative unitarity conditions are fulfilled, the size of two-loop corrections remains well below that of one-loop corrections. Typically, two-loop contributions to $lambda_{hhh}$ amount to approximately 20% of those at one loop, implying that the non-decoupling effects observed at one loop are not significantly modified, but also meaning that higher-order corrections need to be taken into account for the future perspective of precise measurements of the Higgs trilinear coupling.
We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of O(alpha_t*alpha_s) and O(alpha*alpha_s), i.e., all two-loop c orrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the DRbar renormalization scheme or a mixed OS-DRbar scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS-DRbar scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the LHC.
We improve the determination of the Higgs-boson mass in the MSSM with heavy superpartners, by computing the two-loop threshold corrections to the quartic Higgs coupling that involve both the strong and the electroweak gauge couplings. Combined with e arlier results, this completes the calculation of the two-loop QCD corrections to the quartic coupling at the SUSY scale. We also compare different computations of the relation between the quartic coupling and the pole mass of the Higgs boson at the EW scale. We find that the numerical impact of the new corrections on the prediction for the Higgs mass is modest, but comparable to the accuracy of the Higgs-mass measurement at the LHC.
Results are presented for the momentum dependent two-loop contributions of O(alpha_t alpha_s) to the masses and mixing effects in the Higgs sector of the MSSM. They are obtained in the Feynman-diagrammatic approach using a mixed on-shell/DRbar renorm alization that can directly be matched onto the higher-order corrections included in the code FeynHiggs. The new two-loop diagrams are evaluated with the program SecDec. The combination of the new momentum dependent two-loop contribution with the existing one- and two-loop corrections in the on-shell/DRbar scheme leads to an improved prediction of the light MSSM Higgs boson mass and a correspondingly reduced theoretical uncertainty. We find that the corresponding shifts in the lightest Higgs-boson mass M_h are below 1 GeV in all scenarios considered, but can extend up to the level of the current experimental uncertainty. The results are included in the code FeynHiggs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا