ﻻ يوجد ملخص باللغة العربية
The problem of targeted network immunization can be defined as the one of finding a subset of nodes in a network to immunize or vaccinate in order to minimize a tradeoff between the cost of vaccination and the final (stationary) expected infection under a given epidemic model. Although computing the expected infection is a hard computational problem, simple and efficient mean-field approximations have been put forward in the literature in recent years. The optimization problem can be recast into a constrained one in which the constraints enforce local mean-field equations describing the average stationary state of the epidemic process. For a wide class of epidemic models, including the susceptible-infected-removed and the susceptible-infected-susceptible models, we define a message-passing approach to network immunization that allows us to study the statistical properties of epidemic outbreaks in the presence of immunized nodes as well as to find (nearly) optimal immunization sets for a given choice of parameters and costs. The algorithm scales linearly with the size of the graph and it can be made efficient even on large networks. We compare its performance with topologically based heuristics, greedy methods, and simulated annealing.
With the hit of new pandemic threats, scientific frameworks are needed to understand the unfolding of the epidemic. The use of mobile apps that are able to trace contacts is of utmost importance in order to control new infected cases and contain furt
Graph neural networks (GNNs) are a powerful inductive bias for modelling algorithmic reasoning procedures and data structures. Their prowess was mainly demonstrated on tasks featuring Markovian dynamics, where querying any associated data structure d
Assessing and managing the impact of large-scale epidemics considering only the individual risk and severity of the disease is exceedingly difficult and could be extremely expensive. Economic consequences, infrastructure and service disruption, as we
Message-passing methods provide a powerful approach for calculating the expected size of cascades either on random networks (e.g., drawn from a configuration-model ensemble or its generalizations) asymptotically as the number $N$ of nodes becomes inf
The principal submatrix localization problem deals with recovering a $Ktimes K$ principal submatrix of elevated mean $mu$ in a large $ntimes n$ symmetric matrix subject to additive standard Gaussian noise. This problem serves as a prototypical exampl