ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized synchrotron radiation from the Andromeda Galaxy M31 and background sources at 350 MHz

60   0   0.0 ( 0 )
 نشر من قبل Rainer Beck
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polarization measurements at low radio frequencies allow detection of small Faraday rotation measures caused by regular magnetic fields in galaxies and in the foreground of the Milky Way. The galaxy M31 was observed in two overlapping pointings with the Westerbork Synthesis Radio Telescope (WSRT) resulting in ~4 resolution in total intensity and linearly polarized emission. The frequency range 310-376 MHz was covered by 1024 channels which allowed the application of RM synthesis. We derived a data cube in Faraday depth and compared two symmetric ranges of negative and positive Faraday depths. This new method avoids the range of high instrumental polarization and allows the detection of very low degrees of polarization. For the first time, diffuse polarized emission from a nearby galaxy is detected below 1 GHz. The degree of polarization is only 0.21 +/- 0.05 %, consistent with extrapolation of internal depolarization from data at higher radio frequency. A catalogue of 33 polarized sources and their Faraday rotation in the M31 field is presented. Their average depolarization is DP(90,20) = 0.14 +/- 0.02, 7 times stronger depolarized than at 1.4 GHz. We argue that this strong depolarization originates within the sources, e.g. in their radio lobes, or in intervening galaxies on the line of sight. On the other hand, the Faraday rotation of the sources is mostly produced in the foreground of the Milky Way and varies significantly across the ~9 square degree M31 field. As expected, polarized emission from M31 and extragalactic background sources is much weaker at low frequencies compared to the GHz range. Future observations with LOFAR, with high sensitivity and high angular resolution to reduce depolarization, may reveal diffuse polarization from the outer disks and halos of galaxies.

قيم البحث

اقرأ أيضاً

In recent years, the level of the extragalactic radio background has become a point of considerable interest, with some lines of argument pointing to an entirely new cosmological synchrotron background. The contribution of the known discrete source p opulation to the sky temperature is key to this discussion. Because of the steep spectral index of the excess over the cosmic microwave background, it is best studied at low frequencies where the signal is strongest. The Low-Frequency Array (LOFAR) wide and deep sky surveys give us the best constraints yet on the contribution of discrete extragalactic sources at 144 MHz, and in particular allow us to include contributions from diffuse, low-surface-brightness emission that could not be fully accounted for in previous work. We show that, even with these new data, known sources can still only account for around a quarter of the estimated extragalactic sky temperature at LOFAR frequencies.
We show that the anisotropies of the astrophysical stochastic gravitational wave background in the mHz band have a strong dependence on the modelling of galactic and sub-galactic physics. We explore a wide range of self-consistent astrophysical model s for stellar evolution and for the distribution of orbital parameters, all calibrated such that they predict the same number of resolved mergers to fit the number of detections during LIGO/Virgo O1+O2 observations runs. We show that different physical choices for the process of black hole collapse and cut-off in the black hole mass distribution give fractional differences in the angular power spectrum of anisotropies up to 50% on all angular scales. We also point out that the astrophysical information which can be extracted from anisotropies is complementary to the isotropic background and individual mergers. These results underline the interest in the anisotropies of the stochastic gravitational wave background as a new and potentially rich field of research, at the cross-road between astrophysics and cosmology.
118 - J. Singal , J. Haider , M. Ajello 2017
We summarize the radio synchrotron background workshop that took place July 19-21, 2017 at the University of Richmond. This first scientific meeting dedicated to the topic was convened because current measurements of the diffuse radio monopole reveal a surface brightness that is several times higher than can be straightforwardly explained by known Galactic and extragalactic sources and processes, rendering it by far the least well understood photon background at present. It was the conclusion of a majority of the participants that the radio monopole level is at or near that reported by the ARCADE 2 experiment and inferred from several absolutely calibrated zero level lower frequency radio measurements, and unanimously agreed that the production of this level of surface brightness, if confirmed, represents a major outstanding question in astrophysics. The workshop reached a consensus on the next priorities for investigations of the radio synchrotron background.
71 - Sandeep Rana 2018
Diffuse Galactic emission at low frequencies is a major contaminant for studies of redshifted $21$ cm line studies. Removal of these foregrounds is essential for exploiting the signal from neutral hydrogen at high redshifts. Analysis of foregrounds a nd its characteristics is thus of utmost importance. It is customary to test efficacy of foreground removal techniques using simulated foregrounds. Most simulations assume that the distribution of the foreground signal is a Gaussian random field. In this work we test this assumption by computing the binned bispectrum for the all-sky $408$ MHz map. This is done by applying different brightness temperature ($T$) thresholds in order to assess whether the cooler parts of the sky have different characteristics. We find that regions with a low brightness temperature $T < 25$ K indeed have smaller departures from a Gaussian distribution. Therefore, these regions of the sky are ideal for future H{sc i} intensity mapping surveys.
We derive constraints on feedback by active galactic nuclei (AGN) by setting limits on their thermal Sunyaev-Zeldovich (SZ) imprint on the cosmic microwave background (CMB). The amplitude of any SZ signature is small and degenerate with the poorly kn own sub-mm spectral energy distribution of the AGN host galaxy and other unresolved dusty sources along the line of sight. Here we break this degeneracy by combining microwave and sub-mm data from Planck with all-sky far-infrared maps from the AKARI satellite. We first test our measurement pipeline using the Sloan Digital Sky Survey (SDSS) redMaPPer catalogue of galaxy clusters, finding a highly significant detection ($>$$20sigma$) of the SZ effect together with correlated dust emission. We then constrain the SZ signal associated with spectroscopically confirmed quasi-stellar objects (QSOs) from SDSS data release 7 (DR7) and the Baryon Oscillation Spectroscopic Survey (BOSS) DR12. We obtain a low-significance ($1.6sigma$) hint of an SZ signal, pointing towards a mean thermal energy of $simeq 5 times 10^{60}$ erg, lower than reported in some previous studies. A comparison of our results with high-resolution hydrodynamical simulations including AGN feedback suggests QSO host masses of $M_{200c} sim 4 times 10^{12}~h^{-1}M_odot$, but with a large uncertainty. Our analysis provides no conclusive evidence for an SZ signal specifically associated with AGN feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا