ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of very large particles freely advected in a turbulent von Karman flow. Contrary to other experiments for which the particle dynamics is generally studied near the geometrical center of the flow, we track the particles in the whole experiment volume. We observe a strong influence of the mean structure of the flow that generates an unexpected large-scale sampling effect for the larger particles studied; contrary to neutrally buoyant particles of smaller yet finite sizes that exhibit no preferential concentration in homogeneous and isotropic turbulence (Fiabane et al., Phys. Rev. E 86(3), 2012). We find that particles whose diameter approaches the flow integral length scale explore the von Karman flow non-uniformly, with a higher probability to move in the vicinity of two tori situated near the poloidal neutral lines. This preferential sampling is quite robust with respect to changes of any varied parameters: Reynolds number, particle density and particle surface roughness.
We report on the modification of drag by neutrally buoyant spherical particles in highly turbulent Taylor-Couette flow. These particles can be used to disentangle the effects of size, deformability, and volume fraction on the drag, when contrasted wi
We study the melting dynamics of large ice balls in a turbulent von Karman flow at very high Reynolds number. Using an optical shadowgraphy setup, we record the time evolution of particle sizes. We study the heat transfer as a function of the particl
In this paper we numerically investigate the influence of dissipation during particle collisions in an homogeneous turbulent velocity field by coupling a discrete element method to a Lattice-Boltzmann simulation with spectral forcing. We show that ev
This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscom
We report the experimental evidence of the existence of a random attractor in a fully developed turbulent swirling flow. By defining a global observable which tracks the asymmetry in the flux of angular momentum imparted to the flow, we can first rec