ﻻ يوجد ملخص باللغة العربية
We report the first measurement of the diminutive lensing signal arising from matter underdensities associated with cosmic voids. While undetectable individually, by stacking the weak gravitational shear estimates around 901 voids detected in SDSS DR7 by Sutter et al. (2012a), we find substantial evidence for a depression of the lensing signal compared to the cosmic mean. This depression is most pronounced at the void radius, in agreement with analytical models of void matter profiles. Even with the largest void sample and imaging survey available today, we cannot put useful constraints on the radial dark-matter void profile. We invite independent investigations of our findings by releasing data and analysis code to the public at https://github.com/pmelchior/void-lensing
We perform an Alcock-Paczynski test using stacked cosmic voids identified in the SDSS Data Release 7 main sample and Data Release 10 LOWZ and CMASS samples. We find ~1,500 voids out to redshift $0.6$ using a heavily modified and extended version of t
Cosmic voids are an important probe of large-scale structure that can constrain cosmological parameters and test cosmological models. We present a new paradigm for void studies: void detection in weak lensing convergence maps. This approach identifie
Recently, some divergent conclusions about cosmic acceleration were obtained using type Ia supernovae (SNe Ia), with opposite assumptions on the intrinsic luminosity evolution. In this paper, we use strong gravitational lensing systems to probe the c
The properties of large underdensities in the distribution of galaxies in the Universe, known as cosmic voids, are potentially sensitive probes of fundamental physics. We use data from the MultiDark suite of N-body simulations and multiple halo occup
We investigate the potential of using cosmic voids as a probe to constrain cosmological parameters through the gravitational lensing effect of the cosmic microwave background (CMB) and make predictions for the next generation surveys. By assuming the