ترغب بنشر مسار تعليمي؟ اضغط هنا

A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field

41   0   0.0 ( 0 )
 نشر من قبل Daniel Fabrycky
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scientific program to complete a census of planets, characterizing their masses, orbital properties, and dynamical histories using continued observations of the Kepler field of view with the Kepler spacecraft in a two reaction wheel mission. Even with a significantly reduced photometric precision, extending time-domain observations of this field is uniquely capable of pursuing several critical science goals: 1) measuring the architectures of planetary systems by identifying non-transiting planets interleaved among known transiting planets, 2) establishing the mass-radius relationship for planets in the important transition region between small, gas-rich sub-Neptune planets and large, rocky super-Earths, and 3) uncovering dynamical evidence of the formation and evolution of the inner regions of planetary systems. To meet these objectives, the unique multi-object observing capabilities of Kepler will be used in a set of concurrent campaigns with specific motivations. These campaigns focus largely on the ability to interpret Transit Timing Variations (TTVs) that result from dynamical interactions among planets in a system and include: 1) observations of systems that exhibit large TTVs and are particularly rich in dynamical information, 2) observations of systems where additional transit times will yield mass measurements of the constituent planets, 3) observations of systems where the TTV signal evolves over very long timescales, and 4) observations of systems with long-period planet candidates where additional transits will remove orbital period ambiguities caused by gaps in the original Kepler data.

قيم البحث

اقرأ أيضاً

The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrance rate of terrestrial-size planets within the H abitable Zone (HZ) of their host stars. Here we provide a list of HZ exoplanet candidates from the Kepler Data Release 24 Q1-Q17 data vetting process. This work was undertaken as part of the Kepler Habitable Zone Working Group. We use a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ and 20 candidates with radii less than two Earth radii within the conservative HZ. We cross-match our HZ candidates with the Data Release 25 stellar properties and confirmed planet properties to provide robust stellar parameters and candidate dispositions. We also include false positive probabilities recently calculated by Morton et al. (2016) for each of the candidates within our catalogs to aid in their validation. Finally, we performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems.
The discovery of many planets using the Kepler telescope includes ten planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable-zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47 making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparametrized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.
Following Ford et al. (2011, 2012) and Steffen et al. (2012) we derived the transit timing of 1960 Kepler KOIs using the pre-search data conditioning (PDC) light curves of the first twelve quarters of the Kepler data. For 721 KOIs with large enough S NRs, we obtained also the duration and depth of each transit. The results are presented as a catalog for the community to use. We derived a few statistics of our results that could be used to indicate significant variations. Including systems found by previous works, we have found 130 KOIs that showed highly significant TTVs, and 13 that had short-period TTV modulations with small amplitudes. We consider two effects that could cause apparent periodic TTV - the finite sampling of the observations and the interference with the stellar activity, stellar spots in particular. We briefly discuss some statistical aspects of our detected TTVs. We show that the TTV period is correlated with the orbital period of the planet and with the TTV amplitude.
We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. F ew of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.
We report the first ground-based transit observation of K2-3d, a 1.5 R_Earth planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188 cm telescope and the multi(grz)-band imager MuSCAT. Although the depth o f the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for the g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 pm 0.00021 days, which corrects the predicted transit times for 2019, i.e., the era of the James Webb Space Telescope, by sim80 minutes. Our observation demonstrates that (1) even ground-based, 2 m class telescopes can play an important role in refining the transit ephemeris of small-sized, long-period planets, and that (2) a multi-band imager is useful to reduce the systematics of atmospheric origin, in particular for bluer bands and for observations conducted at low-altitude observatories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا