ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of environment on galaxies mass-size distribution: unveiling the transition from outside-in to inside-out evolution

106   0   0.0 ( 0 )
 نشر من قبل Michele Cappellari
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The distribution of galaxies on the mass-size plane as a function of redshift or environment is a powerful test for galaxy formation models. Here we use integral-field stellar kinematics to interpret the variation of the mass-size distribution in two galaxy samples spanning extreme environmental densities. The samples are both identically and nearly mass-selected (stellar mass M*>6e9 Msun) and volume-limited. The first consists of nearby field galaxies from the Atlas3D parent sample. The second consists of galaxies in the Coma Cluster (Abell 1656), one of densest environments for which good resolved spectroscopy can be obtained. The mass-size distribution in the dense environment differs from the field one in two ways: (i) spiral galaxies are replaced by bulge-dominated disk-like fast-rotator early-type galaxies (ETGs), which follow the SAME mass-size relation and have the SAME mass distribution as in the field sample; (ii) the slow rotator ETGs are segregated in mass from the fast rotators, with their size increasing proportionally to their mass. A transition between the two processes appears around the stellar mass M_crit=2e11 Msun. We interpret this as evidence for bulge growth (outside-in evolution) and bulge-related environmental quenching dominating at low masses, with little influence from merging, while significant dry mergers (inside-out evolution) and halo-related quenching driving the mass and size growth at the high-mass end. The existence of these two processes naturally explains the diverse size evolution of galaxies of different masses and the separability of mass and environmental quenching.


قيم البحث

اقرأ أيضاً

[abridged] We study the dependence of the galaxy size evolution on morphology, stellar mass and large scale environment for a sample of 298 group and 384 field quiescent early-type galaxies from the COSMOS survey, selected from z~1 to the present, an d with masses $log(M/M_odot)>10.5$. The galaxy size growth depends on galaxy mass and early-type galaxy morphology, e.g., elliptical galaxies evolve differently than lenticular galaxies. At the low mass end -$10.5<Log(M/M_odot)<11$, ellipticals do not show strong size growth from $zsim1$ to the present (10% to 30% depending on the morphological classification). On the other end, massive ellipticals -log(M/M_odot)>11.2$- approximately doubled their size. Interestingly, lenticular galaxies display different behavior: they appear more compact on average and they do show a size growth of sim60% since z=1 independent of stellar mass. We compare our results with state-of-the art semi-analytic models. While major and minor mergers can account for most of the galaxy size growth, we find that with present data and the theoretical uncertainties in the modeling we cannot state clear evidence favoring either merger or mass loss via quasar and/or stellar winds as the primary mechanism driving the evolution. The galaxy mass--size relation and the size growth do not depend on environment in the halo mass range explored in this work (field to group mass $log(M_h/M_odot)<14$), i.e., group and field galaxies follow the same trends, which is at variance with predictions from current hierarchical models that show a clear dependence of size growth on halo mass for massive ellipticals -$log(M_*/M_odot)>11.2$.
106 - P. Saracco 2012
[Abridged] In this paper we derive the central stellar mass density within a fixed radius and the effective stellar mass density within the effective radius for a complete sample of 34 ETGs morphologically selected at 0.9<z_{spec}<2 and compare them with those derived for a sample of ~900 local ETGs in the same mass range. We find that the central stellar mass density of high-z ETGs spans just an order of magnitude and it is similar to the one of local ETGs as actually found in previous studies.However, we find that the effective stellar mass density of high-z ETGs spans three orders of magnitude, exactly as the local ETGs and that it is similar to the effective stellar mass density of local ETGs showing that it has not changed since z~1.5, in the last 9-10 Gyr. Thus, the wide spread of the effective stellar mass density observed up to z~1.5 must originate earlier, at z>2. Also, we show that the small scatter of the central mass density of ETGs compared to the large scatter of the effective mass density is simply a peculiar feature of the Sersic profile hence, independent of redshift and of any assembly history experienced by galaxies. Thus, it has no connection with the possible inside-out growth of ETGs. Finally, we find a tight correlation between the central stellar mass density and the total stellar mass of ETGs in the sense that the central mass density increases with mass as M^{~0.6}. This implies that the fraction of the central stellar mass of ETGs decreases with the mass of the galaxy. These correlations are valid for the whole population of ETGs considered independently of their redshift suggesting that they originate in the early-phases of their formation.
For the first time, we study the evolution of the stellar mass-size relation for star-forming galaxies from z ~ 4 to z ~ 7 from Hubble-WFC3/IR camera observations of the HUDF and Early Release Science (ERS) field. The sizes are measured by determinin g the best fit model to galaxy images in the rest-frame 2100 AA with the stellar masses estimated from SED fitting to rest-frame optical (from Spitzer/IRAC) and UV fluxes. We show that the stellar mass-size relation of Lyman-break galaxies (LBGs) persists, at least to z ~ 5, and the median size of LBGs at a given stellar mass increases towards lower redshifts. For galaxies with stellar masses of 9.5<Log(M*/Msun)<10.4 sizes evolve as $(1+z)^{-1.20pm0.11}$. This evolution is very similar for galaxies with lower stellar masses of 8.6<Log(M*/Msun)<9.5 which is $r_{e} propto (1+z)^{-1.18pm0.10}$, in agreement with simple theoretical galaxy formation models at high z. Our results are consistent with previous measurements of the LBGs mass-size relation at lower redshifts (z ~ 1-3).
We present a study of the eclipses in the accreting white dwarf EX Dra during TESS Cycles 14 and 15. During both of the two outbursts present in this dataset, the eclipses undergo a hysteretic loop in eclipse-depth/out-of-eclipse-flux space. In each case, the direction in which the loops are executed strongly suggests an outburst which is triggered near the inner edge of the accretion disk and propagates outwards. This in turn suggests that the outbursts in EX Dra are Inside Out outbursts; events predicted by previous hydrodynamic studies of dwarf nova accretion disks and confirmed spectroscopically in a number of other accreting white dwarf systems. We therefore propose that the direction of the loop executed in eclipse-depth/out-of-eclipse flux space be used as a test to phenomenologically distinguish between inside out and outside in outbursts in other eclipsing dwarf novae; a reliable and purely photometric test to differentiate between these phenomena.
We study the radial number density and stellar mass density distributions of satellite galaxies in a sample of 60 massive clusters at 0.04<z<0.26 selected from the Multi-Epoch Nearby Cluster Survey (MENeaCS) and the Canadian Cluster Comparison Projec t (CCCP). In addition to ~10,000 spectroscopically confirmed member galaxies, we use deep ugri-band imaging to estimate photometric redshifts and stellar masses, and then statistically subtract fore-, and background sources using data from the COSMOS survey. We measure the galaxy number density and stellar mass density distributions in logarithmically spaced bins over 2 orders of magnitude in radial distance from the BCGs. For projected distances in the range 0.1<R/R200<2.0, we find that the stellar mass distribution is well-described by an NFW profile with a concentration of c=2.03+/-0.20. However, at smaller radii we measure a significant excess in the stellar mass in satellite galaxies of about $10^{11}$ Msun per cluster, compared to these NFW profiles. We do obtain good fits to generalized NFW profiles with free inner slopes, and to Einasto profiles. To examine how clusters assemble their stellar mass component over cosmic time, we compare this local sample to the GCLASS cluster sample at z~1, which represents the approximate progenitor sample of the low-z clusters. This allows for a direct comparison, which suggests that the central parts (R<0.4 Mpc) of the stellar mass distributions of satellites in local galaxy clusters are already in place at z~1, and contain sufficient excess material for further BCG growth. Evolving towards z=0, clusters appear to assemble their stellar mass primarily onto the outskirts, making them grow in an inside-out fashion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا