ﻻ يوجد ملخص باللغة العربية
A recent paper [Phys. Rev. E 87, 062114 (2013)] presents numerical simulations on a system exhibiting directed ratchet transport of a driven overdamped Brownian particle subjected to a spatially periodic, symmetric potential. The authors claim that their simulations prove the existence of a universal waveform of the external force which optimally enhances directed transport, hence confirming the validity of a previous conjecture put forward by one of them in the limit of vanishing noise intensity. With minor corrections due to noise, the conjecture holds even in the presence of noise, according to the authors. On the basis of their results the authors claim that all previous theories, which predict a different optimal force waveform, are incorrect. In this comment we provide sufficient numerical evidence showing that there is no such universal force waveform and that the evidence obtained by the authors otherwise is due to a fortunate choice of the parameters. Our simulations also suggest that previous theories correctly predict the shape of the optimal waveform within their validity regime, namely when the forcing is weak. On the contrary, the aforementioned conjecture is shown to be wrong.
We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a n
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetri
Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical sinc
We illustrate the application of Quantum Computing techniques to the investigation of the thermodynamical properties of a simple system, made up of three quantum spins with frustrated pair interactions and affected by a hard sign problem when treated
Many systems may switch to an undesired state due to internal failures or external perturbations, of which critical transitions toward degraded ecosystem states are a prominent example. Resilience restoration focuses on the ability of spatially-exten