ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

88   0   0.0 ( 0 )
 نشر من قبل Benjamin Montet
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In todays mailing, Hogg et al. propose image modeling techniques to maintain 10-ppm-level precision photometry in Kepler data with only two working reaction wheels. While these results are relevant to many scientific goals for the repurposed mission, all modeling efforts so far have used a toy model of the Kepler telescope. Because the two-wheel performance of Kepler remains to be determined, we advocate for the consideration of an alternate strategy for a >1 year program that maximizes the science return from the low-torque fields across the ecliptic plane. Assuming we can reach the precision of the original Kepler mission, we expect to detect 800 new planet candidates in the first year of such a mission. Our proposed strategy has benefits for transit timing variation and transit duration variation studies, especially when considered in concert with the future TESS mission. We also expect to help address the first key science goal of Kepler: the frequency of planets in the habitable zone as a function of spectral type.

قيم البحث

اقرأ أيضاً

57 - David W. Hogg 2013
Keplers immense photometric precision to date was maintained through satellite stability and precise pointing. In this white paper, we argue that image modeling--fitting the Kepler-downlinked raw pixel data--can vastly improve the precision of Kepler in pointing-degraded two-wheel mode. We argue that a non-trivial modeling effort may permit continuance of photometry at 10-ppm-level precision. We demonstrate some baby steps towards precise models in both data-driven (flexible) and physics-driven (interpretably parameterized) modes. We demonstrate that the expected drift or jitter in positions in the two-weel era will help with constraining calibration parameters. In particular, we show that we can infer the device flat-field at higher than pixel resolution; that is, we can infer pixel-to-pixel variations in intra-pixel sensitivity. These results are relevant to almost any scientific goal for the repurposed mission; image modeling ought to be a part of any two-wheel repurpose for the satellite. We make other recommendations for Kepler operations, but fundamentally advocate that the project stick with its core mission of finding and characterizing Earth analogs. [abridged]
Giant exoplanets on 10-100 au orbits have been directly imaged around young stars. The peak of the thermal emission from these warm young planets is in the near-infrared (~1-5 microns), whereas mature, temperate exoplanets (i.e., those within their s tars habitable zones) radiate primarily in the mid-infrared (mid-IR: ~10 microns). If the background noise in the mid-IR can be mitigated, then exoplanets with low masses--including rocky exoplanets--can potentially be imaged in very deep exposures. Here, we review the recent results of the Breakthrough Watch/New Earths in the Alpha Centauri Region (NEAR) program on the Very Large Telescope (VLT) in Chile. NEAR pioneered a ground-based mid-IR observing approach designed to push the capabilities for exoplanet imaging with a specific focus on the closest stellar system, Alpha Centauri. NEAR combined several new optical technologies--including a mid-IR optimized coronagraph, adaptive optics system, and rapid chopping strategy to mitigate noise from the central star and thermal background within the habitable zone. We focus on the lessons of the VLT/NEAR campaign to improve future instrumentation--specifically on strategies to improve noise mitigation through chopping. We also present the design and commissioning of the Large Binocular Telescopes Exploratory Survey for Super-Earths Orbiting Nearby Stars (LESSONS), an experiment in the Northern hemisphere that is building on what was learned from NEAR to further push the sensitivity of mid-IR imaging. Finally, we briefly discuss some of the possibilities that mid-IR imaging will enable for exoplanet science.
The overwhelming majority of objects visible to LSST lie within the Galactic Plane. Though many previous surveys have avoided this region for fear of stellar crowding, LSSTs spatial resolution combined with its state-of-the-art Difference Image Analy sis mean that it can conduct a high cadence survey of most of the Galaxy for the first time. Here we outline the many areas of science that would greatly benefit from an LSST survey that included the Galactic Plane, Magellanic Clouds and Bulge at a cadence of 2-3 d. Particular highlights include measuring the mass spectrum of black holes, and mapping the population of exoplanets in the Galaxy in relation to variations in star forming environments. But the same survey data will provide a goldmine for a wide range of science, and we explore possible survey strategies which maximize the scientific return for a number of fields including young stellar objects, cataclysmic variables and Neptune Trojans.
56 - J. McCormac 2013
We present the DONUTS autoguiding algorithm, designed to fix stellar positions at the sub-pixel level for high-cadence time-series photometry, which is also capable of autoguiding on defocused stars. DONUTS was designed to calculate guide corrections from a series of science images and re-centre telescope pointing between each exposure. The algorithm has the unique ability of calculating guide corrections from under-sampled to heavily defocused point spread functions. We present the case for why such an algorithm is important for high precision photometry and give our results from off and on-sky testing. We discuss the limitations of DONUTS and the facilities where it soon will be deployed.
Habitable zones are regions around stars where large bodies of liquid water can be sustained on a planet or satellite. As many stars form in binary systems with non-zero eccentricity, the habitable zones around the component stars of the binary can o verlap and be enlarged when the two stars are at periastron (and less often when the stars are at apastron). We perform N-body simulations of the evolution of dense star-forming regions and show that binary systems where the component stars originally have distinct habitable zones can undergo interactions that push the stars closer together, causing the habitable zones to merge and become enlarged. Occasionally, overlapping habitable zones can occur if the component stars move further apart, but the binary becomes more eccentric. Enlargement of habitable zones happens to 1-2 binaries from an average initial total of 352 in each simulated star-forming region, and demonstrates that dense star-forming regions are not always hostile environments for planet formation and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا