ﻻ يوجد ملخص باللغة العربية
We study the behavior of an algorithm derived from the cavity method for the Prize-Collecting Steiner Tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks networks and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the DHEA solver, a Branch and Cut Linear/Integer Programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two post-processing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.
We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88
The prize-collecting Steiner tree problem PCSTP is a well-known generalization of the classical Steiner tree problem in graphs, with a large number of practical applications. It attracted particular interest during the latest (11th) DIMACS Challenge
We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs where terminals $T$ require varying priority, level, or quality of service. In this problem, we seek to find a minimum cost tree containing edges of
We study the Steiner tree problem on map graphs, which substantially generalize planar graphs as they allow arbitrarily large cliques. We obtain a PTAS for Steiner tree on map graphs, which builds on the result for planar edge weighted instances of B
Given a graph $G = (V,E)$ and a subset $T subseteq V$ of terminals, a emph{Steiner tree} of $G$ is a tree that spans $T$. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a m