ﻻ يوجد ملخص باللغة العربية
Topological insulators (TIs) hold great promise for realizing zero-energy Majorana states in solid-state systems. Recently, several groups reported experimental data suggesting that signatures of Majorana modes in topological insulator Josephson junctions (TIJJs) have -- indeed -- been observed. To verify this claim, one needs to study the topological properties of low-energy Andreev-bound states (ABS) in TIs of which the Majorana modes are a special case. It has been shown theoretically that topologically non-trivial low-energy ABS are also present in TIJJs with doped topological insulators up to some critical level of doping at which the system undergoes a topological phase transition. Here, we present first experimental evidence for this topological transition in the bulk band of a doped TI. Our theoretical calculations, and numerical modeling link abrupt changes in the critical current of top-gated TIJJs to moving the chemical potential in the charge-accumulation region on the surface of the doped TI across a band-inversion point. We demonstrate that the critical-current changes originate from a shift of the spatial location of low-energy ABS from the surface to the boundary between topologically-trivial and band-inverted regions after the transition. The appearance of a decay channel for surface ABS is related to the vanishing of the band effective mass in the bulk and thus exemplifies the topological character of surface ABS as boundary modes. Importantly, the mechanism suggest a means of manipulating Majorana modes in future experiments.
A Josephson supercurrent has been induced into the three-dimensional topological insulator Bi1.5Sb0.5Te1.7Se1.3. We show that the transport in Bi1.5Sb0.5Te1.7Se1.3 exfoliated flakes is dominated by surface states and that the bulk conductivity can be
Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase-measurements as the fingerprint of the topological transition are
We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L = 134 nm, the critical supercurrent Ic can be modulated
Using non-equilibrium Greens functions, we studied numerically the transport properties of a Josephson junction, superconductor-topological insulator-superconductor hybrid system. Our numerical calculation shows first that proximity-induced supercond
Three-dimensional topological insulators (TIs) in proximity with superconductors are expected to exhibit exotic phenomena such as topological superconductivity (TSC) and Majorana bound states (MBS), which may have applications in topological quantum