ﻻ يوجد ملخص باللغة العربية
A theoretical study of the emergence of helices in the wake of precipitation fronts is presented. The precipitation dynamics is described by the Cahn-Hilliard equation and the fronts are obtained by quenching the system into a linearly unstable state. Confining the process onto the surface of a cylinder and using the pulled-front formalism, our analytical calculations show that there are front solutions that propagate into the unstable state and leave behind a helical structure. We find that helical patterns emerge only if the radius of the cylinder R is larger than a critical value R>R_c, in agreement with recent experiments.
Helical and helicoidal precipitation patterns emerging in the wake of reaction-diffusion fronts are studied. In our experiments, these chiral structures arise with well-defined probabilities P_H controlled by conditions such as e.g., the initial conc
We have studied the dispersive behaviour of imbibition fronts in a porous medium by X-ray tomography. Injection velocities were varied and the porous medium was initially prewetted or not. At low velocity in the prewetted medium, the imbibition profi
The empirical velocity of a reaction-diffusion front, propagating into an unstable state, fluctuates because of the shot noises of the reactions and diffusion. Under certain conditions these fluctuations can be described as a diffusion process in the
We examine experimentally the deformation of flexible, microscale helical ribbons with nanoscale thickness subject to viscous flow in a microfluidic channel. Two aspects of flexible microhelices are quantified: the overall shape of the helix and the
The dominant reaction pathway (DRP) is a rigorous framework to microscopically compute the most probable trajectories, in non-equilibrium transitions. In the low-temperature regime, such dominant pathways encode the information about the reaction mec