ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2XMMi/SDSS Galaxy Cluster Survey. II. The optically confirmed cluster sample and the L_X-T relation

128   0   0.0 ( 0 )
 نشر من قبل Ali Takey
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compile a sample of X-ray-selected galaxy groups and clusters from the XMM-Newton serendipitous source catalogue (2XMMi-DR3) with optical confirmation and redshift measurement from the Sloan Digital Sky Survey (SDSS). The X-ray cluster candidates were selected from the 2XMMi-DR3 catalogue in the footprint of the SDSS-DR7. We developed a finding algorithm to search for overdensities of galaxies at the positions of the X-ray cluster candidates in the photometric redshift space and to measure the redshifts of the clusters from the SDSS data. The detection algorithm provides the photometric redshift of 530 galaxy clusters. Of these, 310 clusters have a spectroscopic redshift for at least one member galaxy. About 75 percent of the optically confirmed cluster sample are newly discovered X-ray clusters. Moreover, 301 systems are known as optically selected clusters in the literature while the remainder are new discoveries in X-ray and optical bands. The optically confirmed cluster sample spans a wide redshift range 0.03-0.70 (median z=0.32). In this paper, we present the catalogue of X-ray-selected galaxy groups and clusters from the 2XMMi/SDSS galaxy cluster survey. The catalogue has two subsamples: (i) a cluster sample comprising 345 objects with their X-ray spectroscopic temperature and flux from the spectral fitting, and (ii) a cluster sample consisting of 185 systems with their X-ray flux from the 2XMMi-DR3 catalogue, because their X-ray data are insufficient for spectral fitting. The updated L_X-T relation of the current sample with X-ray spectroscopic parameters is presented. We see no evidence for evolution in the slope and intrinsic scatter of the L_X-T relation with redshift when excluding the low-luminosity groups.



قيم البحث

اقرأ أيضاً

139 - A. Takey , A. Schwope , 2011
We present a catalogue of X-ray selected galaxy clusters and groups as a first release of the 2XMMi/SDSS Galaxy Cluster Survey. The survey is a search for galaxy clusters detected serendipitously in observations with XMM-Newton in the footprint of th e Sloan Digital Sky Survey (SDSS). The main aims of the survey are to identify new X-ray galaxy clusters, investigate their X-ray scaling relations, identify distant cluster candidates and study the correlation of the X-ray and optical properties. In this paper we describe the basic strategy to identify and characterize the X-ray cluster candidates that currently comprise 1180 objects selected from the second XMM-Newton serendipitous source catalogue (2XMMi-DR3). Cross-correlation of the initial catalogue with recently published optically selected SDSS galaxy cluster catalogues yields photometric redshifts for 275 objects. Of these, 182 clusters have at least one member with a spectroscopic redshift from existing public data (SDSS-DR8). Here we present the X-ray properties of the first cluster sample which comprises 175 clusters, among which 139 objects are new X-ray discoveries while the others were previously known as X-ray sources. The first cluster sample from the survey covers a wide range of redshifts from 0.09 to 0.61, bolometric luminosities L_500 = 1.9 x 10^42 - 1.2 x 10^45 erg/s, and masses M_500 = 2.3 x 10^13 - 4.9 x 10^14 Msun. We extend the relation between the X-ray bolometric luminosity L_500 and the X-ray temperature towards significantly lower T and L and still find that the slope of the linear L-T relation is consistent with values published for high luminosities.
133 - A. Takey , A. Schwope , G. Lamer 2014
We present a sample of 383 X-ray selected galaxy groups and clusters with spectroscopic redshift measurements (up to z ~ 0.79) from the 2XMMi/SDSS Galaxy Cluster Survey. The X-ray cluster candidates were selected as serendipitously detected sources f rom the 2XMMi-DR3 catalogue that were located in the footprint of the Sloan Digital Sky Survey (SDSS-DR7). The cluster galaxies with available spectroscopic redshifts were selected from the SDSS-DR10. We developed an algorithm for identifying the cluster candidates that are associated with spectroscopically targeted luminous red galaxies and for constraining the cluster spectroscopic redshift. A cross-correlation of the constructed cluster sample with published optically selected cluster catalogues yielded 264 systems with available redshifts. The present redshift measurements are consistent with the published values. The current cluster sample extends the optically confirmed cluster sample from our cluster survey by 67 objects. Moreover, it provides spectroscopic confirmation for 78 clusters among our published cluster sample, which previously had only photometric redshifts. Of the new cluster sample that comprises 67 systems, 55 objects are newly X-ray discovered clusters and 52 systems are sources newly discovered as galaxy clusters in optical and X-ray wavelengths. Based on the measured redshifts and the fluxes given in the 2XMMi-DR3 catalogue, we estimated the X-ray luminosities and masses of the cluster sample.
We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster ca ndidates. We find 104 Swift clusters with a >3sigma galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ~85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z <~ 0.3 and is still 80% complete up to z ~= 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these clusters are new detections.
We present Herschel observations of the Fornax cluster at 100, 160, 250, 350 and 500u with a spatial resolution of 7 - 36 arc sec (10 = 1 kpc at d_Fornax=17.9 Mpc). We define a sample of 11 bright galaxies, selected at 500u, directly comparable with our past work on Virgo. We find good agreement with previous observations made by IRAS and Planck. The FIR luminosity density is higher (factor of three) in Fornax compared to Virgo. The 100u (42.5-122.5u) luminosity is two orders of magnitude larger in Fornax than in the local field as measured by IRAS. Using stellar (L_{0.4-2.5}) and FIR (L_{100-500}) luminosities we estimate a mean optical depth of tau=0.4+/-0.1 - the same value as Virgo. For 10 of the 11 galaxies (NGC1399 excepted) we fit a modified blackbody curve (beta=2.0) to the SEDs to derive dust masses and temperatures of 10^{6.54-8.35} M_0 and T=14.6-24.2K respectively, comparable to Virgo. The derived stars-to-gas(atomic) and gas(atomic)-to-dust ratios vary from 1.1-67.6 and 9.8-436.5 respectively, again consistent with Virgo. Fornax is a mass overdensity in stars and dust of about 120 compared to the local field (30 for Virgo). Fornax and Virgo are both a factor of 6 lower over densities in gas(atomic) than in stars and dust indicating loss of gas, but not dust and stars, in the cluster environment. As the brightest FIR source in either Fornax and Virgo, NGC1365 is detected by Planck. The Planck data fit the PACS/SPIRE SED out to 1382u with no evidence of other sources of emission (spinning dust, free-free, synchrotron). At the opposite end of the scale NGC1399 is detected only at 500$mu$m with the emission probably arising from the nuclear radio source rather than inter-stellar dust.
Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the di stribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. Aims. This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of $3times 10^{-14},mathrm{erg ,s^{-1}cm^{-2}}$ on the source flux within a 1$^{prime}$ aperture. Methods. The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results. The bright cluster sample consists of systems with masses between $M_{500}=7times 10^{13}$ and $3times 10^{14} M_odot$, mostly located between $z=0.1$ and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the predictions from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of $sigma_8$ and/or $Omega_m$ appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to $zsim1$. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا