ﻻ يوجد ملخص باللغة العربية
We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the adjointness of the induction operator, we show that the growth rate of the dynamo will be exactly the same for two types of magnetic boundary conditions: the magnetic field can be normal (infinite magnetic permeability, also called pseudo-vacuum) or tangent (perfect electrical conductor) to the boundaries of the domain. These boundary conditions correspond to well-defined physical limits often used in numerical models and relevant to laboratory experiments. The only constraint is for the velocity field u to be reversible, meaning there exists a transformation changing u into -u. We illustrate this surprising property using S2T2 type of flows in spherical geometry inspired by Dudley and James (1989). Using both types of boundary conditions, it is shown that the growth rates of the dynamos are identical, although the corresponding magnetic eigenmodes are drastically different.
Convection and magnetic field generation in the Earth and planetary interiors are driven by both thermal and compositional gradients. In this work numerical simulations of finite-amplitude double-diffusive convection and dynamo action in rapidly rota
Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-
Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with
Stellar radiative zones are typically assumed to be motionless in standard models of stellar structure but there is sound theoretical and observational evidence that this cannot be the case. We investigate by direct numerical simulations a three-dime
We study generation of magnetic fields, involving large spatial scales, by convective plan-forms in a horizontal layer. Magnetic modes and their growth rates are expanded in power series in the scale ratio, and the magnetic eddy diffusivity (MED) ten