ﻻ يوجد ملخص باللغة العربية
We employ recently published measurements of the velocity dispersions in the newly discovered dwarf satellite galaxies of Andromeda to test our previously published predictions of this quantity. The data are in good agreement with our specific predictions for each dwarf made a priori with MOND, with reasonable stellar mass-to-light ratios, and no dark matter, while Newtonian dynamics point to quite large mass discrepancies in these systems. MOND distinguishes between regimes where the internal field of the dwarf, or the external field of the host, dominates. The data appear to recognize this distinction, which is a unique feature of MOND not explicable in LCDM.
The Lambda-CDM cosmological model is succesful at reproducing various independent sets of observations concerning the large-scale Universe. This model is however currently, and actually in principle, unable to predict the gravitational field of a gal
Context. The elliptical galaxy NGC 3923 is surrounded by numerous stellar shells that are concentric arcs centered on the galactic core. They are very likely a result of a minor merger and they consist of stars in nearly radial orbits. For a given po
Inflation is an early period of accelerated cosmic expansion, thought to be sourced by high energy physics. A key task today is to use the influx of increasingly precise observational data to constrain the plethora of inflationary models suggested by
We present an accurate analysis of the H2 absorption lines from the zabs ~ 2.4018 damped Ly{alpha} system towards HE 0027-1836 observed with the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph (VLT/UVES) as a part of the European Sou
We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid descriptio