ترغب بنشر مسار تعليمي؟ اضغط هنا

Improvement in Fast Particle Track Reconstruction with Robust Statistics

125   0   0.0 ( 0 )
 نشر من قبل Mark Wellons
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The IceCube project has transformed one cubic kilometer of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This manuscript describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muon; and (2) the coincident event problem, which is to determine how many muons are active in the detector during a time window. Rather than solving these problems by developing more complex physical models that are applied at later stages of the analysis, our approach is to augment the detectors early reconstruction with data filters and robust statistical techniques. These can be implemented at the level of on-line reconstruction and, therefore, improve all subsequent reconstructions. Using the metric of median angular resolution, a standard metric for track reconstruction, we improve the accuracy in the initial reconstruction direction by 13%. We also present improvements in measuring the number of muons in coincident events: we can accurately determine the number of muons 98% of the time.

قيم البحث

اقرأ أيضاً

Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei ini tiating cascades of secondary particles which led to the formation of extensive air showers (EAS). They carry essential information about the extra-terrestrial events and are characterized by large flux and varying angular distribution. To account for open questions and the origin of cosmic rays, one needs to study various components of cosmic rays with energy and arriving direction. Because of the close relation between muon and neutrino production, it is the most important particle to keep track of. We propose a novel tracking algorithm based on the Geometric Deep Learning approach using graphical structure to incorporate domain knowledge to track cosmic ray muons in our 3-D scintillator detector. The detector is modeled using the GEANT4 simulation package and EAS is simulated using CORSIKA (COsmic Ray SImulations for KAscade) with a focus on muons originating from EAS. We shed some light on the performance, robustness towards noise and double hits, limitations, and application of the proposed algorithm in tracking applications with the possibility to generalize to other detectors for astrophysical and collider experiments.
An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data.
197 - J.W. Lee , G. Jhang , G. Cerizza 2020
In this paper, we present a software framework, S$pi$RITROOT, which is capable of track reconstruction and analysis of heavy-ion collision events recorded with the S$pi$RIT time projection chamber. The track-fitting toolkit GENFIT and the vertex reco nstruction toolkit RAVE are applied to a box-type detector system. A pattern recognition algorithm which performs helix track finding and handles overlapping pulses is described. The performance of the software is investigated using experimental data obtained at the Radioactive Isotope Beam Facility (RIBF) at RIKEN. This work focuses on data from $^{132}$Sn + $^{124}$Sn collision events with beam energy of 270 AMeV. Particle identification is established using $left<dE/dxright>$ and magnetic rigidity, with pions, hydrogen isotopes, and helium isotopes.
247 - J. Billard 2012
Directional detection of Dark Matter is a promising search strategy. However, to perform such detection, a given set of parameters has to be retrieved from the recoiling tracks : direction, sense and position in the detector volume. In order to optim ize the track reconstruction and to fully exploit the data of forthcoming directional detectors, we present a likelihood method dedicated to 3D track reconstruction. This new analysis method is applied to the MIMAC detector. It requires a full simulation of track measurements in order to compare real tracks to simulated ones. We conclude that a good spatial resolution can be achieved, i.e. sub-mm in the anode plane and cm along the drift axis. This opens the possibility to perform a fiducialization of directional detectors. The angular resolution is shown to range between 20$^circ$ to 80$^circ$, depending on the recoil energy, which is however enough to achieve a high significance discovery of Dark Matter. On the contrary, we show that sense recognition capability of directional detectors depends strongly on the recoil energy and the drift distance, with small efficiency values (50%-70%). We suggest not to consider this information either for exclusion or discovery of Dark Matter for recoils below 100 keV and then to focus on axial directional data.
73 - Steven Lantz 2020
One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filte ring, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD architectures that are now prevalent in high-performance hardware. In this paper, we discuss the design and performance of the improved tracking algorithm, referred to as mkFit. A key piece of the algorithm is the Matriplex library, containing dedicated code to optimally vectorize operations on small matrices. The physics performance of the mkFit algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm as a function of the parallel resources utilized and find large speedups both from vectorization and multi-threading. mkFit achieves a speedup of a factor of 6 compared to the nominal algorithm when run in a single-threaded application within the CMS software framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا