ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric quantum discord with Bures distance: the qubit case

250   0   0.0 ( 0 )
 نشر من قبل Dominique Spehner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The minimal Bures distance of a quantum state of a bipartite system AB to the set of classical states for subsystem A defines a geometric measure of quantum discord. When A is a qubit, we show that this geometric quantum discord is given in terms of the eigenvalues of a (2 n_B) x (2 n_B) hermitian matrix, n_B being the Hilbert space dimension of the other subsystem B. As a first application, we calculate the geometric discord for the output state of the DQC1 algorithm. We find that it takes its highest value when the unitary matrix from which the algorithm computes the trace has its eigenvalues uniformly distributed on the unit circle modulo a symmetry with respect to the origin. As a second application, we derive an explicit formula for the geometric discord of two-qubit states with maximally mixed marginals and compare it with other measures of quantum correlations. We also determine the closest classical states to such two-qubit states.



قيم البحث

اقرأ أيضاً

Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results about X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytica results about quantum discord have not been found yet. Based on the support of numerical computations, some conjectures are proposed to help us establish geometric picture. We find that the geometric picture for these states has intimate relationship with that for X states. Thereby in some cases analytical expressions of classical correlations and quantum discord can be obtained.
This article contains a survey of the geometric approach to quantum correlations. We focus mainly on the geometric measures of quantum correlations based on the Bures and quantum Hellinger distances.
159 - Wei Song , Long-Bao Yu , Ping Dong 2011
We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord (GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of en tanglement and GMQD. The dynamic evolution of GMQD under two typical kinds of quantum decoherence channels is also investigated. It is shown that there exists a class of initial states for which the GMQD is not destroyed by decoherence in a finite time interval. Furthermore, we establish a factorization law between the initial and final GMQD, which allows us to infer the evolution of entanglement under the influences of the environment.
For the first time, we compute the quantum discord in bipartite systems containing up to nine qubits. An analytical expression is obtained for the discord in a bipartite system with three qubits. The dependence of the discord on the temperature and the structural parameter of the model is studied.
We discuss some properties of the quantum discord based on the geometric distance advanced by Dakic, Vedral, and Brukner [Phys. Rev. Lett. {bf 105}, 190502 (2010)], with emphasis on Werner- and MEM-states. We ascertain just how good the measure is in representing quantum discord. We explore the dependence of quantum discord on the degree of mixedness of the bipartite states, and also its connection with non-locality as measured by the maximum violation of a Bell inequality within the CHSH scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا