ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram for the Kuramoto model with van Hemmen interactions

105   0   0.0 ( 0 )
 نشر من قبل Ian Lizarraga
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distribution of the oscillators natural frequencies. Depending on the size of the attractive and random coupling terms, the system displays four states: complete incoherence, partial synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary synchronization.



قيم البحث

اقرأ أيضاً

The Kuramoto model describes a system of globally coupled phase-only oscillators with distributed natural frequencies. The model in the steady state exhibits a phase transition as a function of the coupling strength, between a low-coupling incoherent phase in which the oscillators oscillate independently and a high-coupling synchronized phase. Here, we consider a uniform distribution for the natural frequencies, for which the phase transition is known to be of first order. We study how the system close to the phase transition in the supercritical regime relaxes in time to the steady state while starting from an initial incoherent state. In this case, numerical simulations of finite systems have demonstrated that the relaxation occurs as a step-like jump in the order parameter from the initial to the final steady state value, hinting at the existence of metastable states. We provide numerical evidence to suggest that the observed metastability is a finite-size effect, becoming an increasingly rare event with increasing system size.
In the present work it is studied the fermionic van Hemmen model for the spin glass (SG) with a transverse magnetic field $Gamma$. In this model, the spin operators are written as a bilinear combination of fermionic operators, which allows the analys is of the interplay between charge and spin fluctuations in the presence of a quantum spin flipping mechanism given by $Gamma$. The problem is expressed in the fermionic path integral formalism. As results, magnetic phase diagrams of temperature versus the ferromagnetic interaction are obtained for several values of chemical potential $mu$ and $Gamma$. The $Gamma$ field suppresses the magnetic orders. The increase of $mu$ alters the average occupation per site that affects the magnetic phases. For instance, the SG and the mixed SG+ferromagnetic phases are also suppressed by $mu$. In addition, $mu$ can change the nature of the phase boundaries introducing a first order transition.
Using the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramotos results and obtain a mathematical description of t he instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases where the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focussing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze rare events by means of an asymptotic formula obtained from a power series expansion of the instantaneous frequency distribution.
168 - N.G. Fytas , A. Malakis 2008
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation lengths exponent, in agreement with previous estimates from ground-state studies of the model.
We analyze the Eckhaus instability of plane waves in the one-dimensional complex Ginzburg-Landau equation (CGLE) and describe the nonlinear effects arising in the Eckhaus unstable regime. Modulated amplitude waves (MAWs) are quasi-periodic solutions of the CGLE that emerge near the Eckhaus instability of plane waves and cease to exist due to saddle-node bifurcations (SN). These MAWs can be characterized by their average phase gradient $ u$ and by the spatial period P of the periodic amplitude modulation. A numerical bifurcation analysis reveals the existence and stability properties of MAWs with arbitrary $ u$ and P. MAWs are found to be stable for large enough $ u$ and intermediate values of P. For different parameter values they are unstable to splitting and attractive interaction between subsequent extrema of the amplitude. Defects form from perturbed plane waves for parameter values above the SN of the corresponding MAWs. The break-down of phase chaos with average phase gradient $ u$ > 0 (``wound-up phase chaos) is thus related to these SNs. A lower bound for the break-down of wound-up phase chaos is given by the necessary presence of SNs and an upper bound by the absence of the splitting instability of MAWs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا