ترغب بنشر مسار تعليمي؟ اضغط هنا

Double quantum dot as a minimal thermoelectric generator

147   0   0.0 ( 0 )
 نشر من قبل Karsten Held
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.



قيم البحث

اقرأ أيضاً

402 - F. Reis , G. Li , L. Dudy 2016
Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channel s at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming bismuthene, on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.
Phonon-assisted electronic tunnelings through a vibrating quantum dot embedded between normal and superconducting leads are studied in the Kondo regime. In such a hybrid device, with the bias applied to the normal lead, we find a series of Kondo side bands separated by half a phonon energy in the differential conductance, which are distinct from the phonon-assisted sidebands previously observed in the conventional Andreev tunnelings and in systems with only normal leads. These Kondo sidebands originate from the Kondo-Andreev cooperative cotunneling mediated by phonons, which exhibit a novel Kondo transport behavior due to the interplay of the Kondo effect, the Andreev tunnelings, and the mechanical vibrations. Our result could be observed in a recent experiment setup [J. Gramich emph{et al.}, PRL textbf{115}, 216801 (2015)], provided that their carbon nanotube device reaches the Kondo regime at low temperatures.
Nonabelian anyons offer the prospect of storing quantum information in a topological qubit protected from decoherence, with the degree of protection determined by the energy gap separating the topological vacuum from its low lying excitations. Origin ally proposed to occur in quantum wells in high magnetic fields, experimental systems thought to harbor nonabelian anyons range from p-wave superfluids to superconducting systems with strong spin orbit coupling. However, all of these systems are characterized by small energy gaps, and despite several decades of experimental work, definitive evidence for nonabelian anyons remains elusive. Here, we report the observation of arobust, incompressible even-denominator fractional quantum Hall phase in a new generation of dual-gated, hexagonal boron nitride encapsulated bilayer graphene samples. Numerical simulations suggest that this state is in the Pfaffian phase and hosts nonabelian anyons, and the measured energy gaps are several times larger than those observed in other systems. Moreover, the unique electronic structure of bilayer graphene endows the electron system with two new control parameters. Magnetic field continuously tunes the effective electron interactions, changing the even-denominator gap non-monotonically and consistent with predictions that a transition between the Pfaffian phase and the composite Fermi liquid (CFL) occurs just beyond the experimentally explored magnetic field range. Electric field, meanwhile, tunes crossings between levels from different valleys. By directly measuring the valley polarization, we observe a continuous transition from an incompressible to a compressible phase at half-filling mediated by an unexpected incompressible, yet polarizable, intermediate phase. Valley conservation implies this phase is an electrical insulator with gapless neutral excitations.
We study the low temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single level quantum dot including electron-electron interaction, non-symmetric couplings to the leads and non-linear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.
113 - P.Chudzinski 2020
Topological insulators are frequently also one of the best known thermoelectric materials. It has been recently discovered that in 3D topological insulators each skew dislocation can host a pair of 1D topological states a helical TLL. We derive exact analytical formulas for thermoelectric Seebeck coefficient in TLL and investigate up to what extent one can ascribe the outstanding thermoelectric properties of Bi 2 Te 3 to these 1D topological states. To this end we take a model of a dense dislocation network and find an analytic formula for an overlap between 1D (the TLL) and 3D electronic states. Our study is applicable to a weakly n-doped Bi 2 Te 3 but also to a broader class of nano-structured materials with artificially created 1D systems. Furthermore, our results can be used at finite frequency settings e.g. to capture transport activated by photo-excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا