ﻻ يوجد ملخص باللغة العربية
We report experimental and numerical evidences that the dynamics of the director of a liquid crystal driven by an electric field close to the critical point of the Freedericksz Transition(FT) is not described by a Landau-Ginzburg (LG) equation as it is usually done in literature. The reasons are related to the very crude approximations done to obtain this equation, to the finite value of the anchoring energy and to small asymmetries on boundary conditions. We also discuss the difference between the use of LG equation for the statics and the dynamics. These results are useful in all cases where FT is used as an example for other orientational transitions.
We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distanc
We report phase separation and liquid-crystal ordering induced by scalar activity in a system of Soft Repulsive Spherocylinders (SRS) of aspect ratio $L/D = 5 $. Activity was introduced by increasing the temperature of half of the SRS (labeled textit
Within the framework of liquid crystal flows, the Qian & Sheng (QS) model for Q-tensor dynamics is compared to the Volovik & Kats (VK) theory of biaxial nematics by using Hamiltons variational principle. Under the assumption of rotational dynamics fo
We study the flow behaviour of a twist-bend nematic $(N_{TB})$ liquid crystal. It shows three distinct shear stress ($sigma$) responses in a certain range of temperatures and shear rates ($dot{gamma}$). In Region-I, $sigmasimsqrt{dot{gamma}}$, in reg
By the Wolffs cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both