ﻻ يوجد ملخص باللغة العربية
MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-ray light curves have revealed that MAXI J1659-152 is the shortest period black hole candidate identified to date. Here we present the results of a large observing campaign at radio, sub-millimeter, near-infrared (nIR), optical and ultraviolet (UV) wavelengths. We have combined this very rich data set with the available X-ray observations to compile a broadband picture of the evolution of this outburst. We have performed broadband spectral modeling, demonstrating the presence of a spectral break at radio frequencies and a relationship between the radio spectrum and X-ray states. Also, we have determined physical parameters of the accretion disk and put them into context with respect to the other parameters of the binary system. Finally, we have investigated the radio-X-ray and nIR/optical/UV-X-ray correlations up to ~3 years after the outburst onset to examine the link between the jet and the accretion disk, and found that there is no significant jet contribution to the nIR emission when the source is in the soft or intermediate X-ray spectral state, consistent with our detection of the jet break at radio frequencies during these states.
We present 5 years of optical and infrared data of the black hole candidate MAXI J1659-152 covering its 2010 outburst, decay and quiescence. Combining optical data taken during the outburst decay, we obtain an orbital period of 2.414 $pm$ 0.005 h, in
Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of
We report on X-ray spectral and timing results of the new black hole candidate (BHC) MAXI J1659-152 with the orbital period of 2.41 hours (shortest among BHCs) in the 2010 outburst from 65 Rossi X-ray Timing Explorer (RXTE) observations and 8 simulta
We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535-571, which underwent a prolonged outburst beginning on 2 September 2017. We monitored MAXI J1535-571 with the Murchison Widefield A
MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array (ATCA), as w