ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculations of the cross sections for synthesis of new {293-296}118 isotopes in {249-252}Cf(48Ca,xn) reactions

56   0   0.0 ( 0 )
 نشر من قبل Krystyna Siwek-Wilczynska
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A project of using a target consisting of the mixture of (249-252)Cf isotopes to be bombarded with the 48Ca beam, aimed to synthesize new isotopes of the heaviest known element Z = 118, is under way at the FLNR in Dubna. In the present work excitation functions for all the reactions: 249Cf(48Ca,xn)(297-x)118, 250Cf(48Ca,xn)(298-x)118, 251Cf(48Ca,xn)(299-x)118 and 252Cf(48Ca,xn)(300-x)118 have been calculated in the framework of the fusion-by-diffusion model, assuming fission barriers, ground-state masses and shell effects of the superheavy nuclei predicted by Kowal et al. Energy dependence of the effective cross sections for the synthesis of selected new isotopes: (293)118, (294)118, (295)118 and (296)118 is predicted for the particular isotopic composition of the Cf target prepared for the Dubna experiment.

قيم البحث

اقرأ أيضاً

The study of the $^{48}$Ca+$^{249,250,251,252}$Cf reactions in a wide energy interval around the external barrier has been achieved with the aim of investigating the dynamical effects of the entrance channel via the $^{48}$Ca induced reactions on the $^{249-252}$Cf targets and to analyze the influence of odd and even neutron composition in target on the capture, quasifission and fusion cross sections. Moreover, we also present the results of the individual evaporation residue excitation functions obtained from the de-excitation cascade of the various even-odd and even-even $^{297-300}$118 superheavy compound nuclei reached in the studied reactions, and we compare our results of the $^{294}$118 evaporation residue yields obtained in the synthesis process of the $^{48}$Ca+$^{249,250}$Cf reactions with the experimental data obtained in the $^{48}$Ca+$^{249}$Cf experiment carried out at the Flerov Laboratory of Nuclear Reactions of Dubna.
The time-dependent generator coordinate method with the gaussian overlap approximation (TDGCM+GOA) formalism is applied to describe the fission of $^{252}$Cf. We perform analysis of fission from the initial states laying in the energetic range from t he ground state to the state located 4 MeV above the fission barrier. The fission fragment mass distributions, obtained for different parity, energy of levels and types of mixed states, are calculated and compared with experimental data. The impact of the total time of wave packet propagation on the final results is studied as well. The weak dependence of obtained mass yields on the initial conditions is shown.
57 - K.E. Gregorich 2002
In April-May, 2001, the previously reported experiment to synthesize element 118 using the $^{208}$Pb($^{86}$Kr,n)$^{293}$118 reaction was repeated. No events corresponding to the synthesis of element 118 were observed with a total beam dose of 2.6 x 10$^{18}$ ions. The simple upper limit cross sections (1 event) were 0.9 and 0.6 pb for evaporation residue magnetic rigidities of 2.00 $T m$ and 2.12 $T m$, respectively. A more detailed cross section calculation, accounting for an assumed narrow excitation function, the energy loss of the beam in traversing the target and the uncertainty in the magnetic rigidity of the Z=118 recoils is also presented. Re-analysis of the primary data files from the 1999 experiment showed the reported element 118 events are not in the original data. The current results put constraints on the production cross section for synthesis of very heavy nuclei in cold fusion reactions.
We systematically analyze total reaction cross sections of carbon isotopes with N=6--16 on a $^{12}$C target for wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant generated from a phenom enological mean-field potential, which reasonably well reproduces the ground state properties for most of the even $N$ isotopes. We need separate studies not only for odd nuclei but also for $^{16}$C and $^{22}$C. The density of the carbon isotope is constructed by eliminating the effect of the center of mass motion. For the calculations of the cross sections, we take two schemes: one is the Glauber approximation, and the other is the eikonal model using a global optical potential. We find that both of the schemes successfully reproduce low and high incident energy data on the cross sections of $^{12}$C, $^{13}$C and $^{16}$C on $^{12}$C. The calculated reaction cross sections of $^{15}$C are found to be considerably smaller than the empirical values observed at low energy. We find a consistent parameterization of the nucleon-nucleon scattering amplitude, differently from previous ones. Finally, we predict the total reaction cross section of $^{22}$C on $^{12}$C.
To describe of dynamics of ternary fission of $^{252}$Cf an equation of motion of the tri-nuclear system is calculated. The fission of the $^{70}$Ni+$^{50}$Ca+$^{132}$Sn channel was chosen as one of the more probable channels of true ternary fission of $^{252}$Cf. The collinearity of ternary fission has been checked by analyzing results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy of this position is the smallest) and the component of the middle fragments initial velocity which is perpendicular to this line, is zero then ternary fission is collinear, otherwise the non collinear ternary fission takes place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا